Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Feb 1;52(2):453–464. doi: 10.1083/jcb.52.2.453

FURTHER CHARACTERIZATION OF BOVINE KERATOHYALIN

Arthur R Ugel 1, William Idler 1
PMCID: PMC2108642  PMID: 5057980

Abstract

Extraction of serial sections of cattle hoof epidermis with solutions of calcium chloride, magnesium chloride, potassium chloride, sodium chloride, guanidine hydrochloride, ammonium sulfate, and potassium phosphate buffer (pH 7.0) at varying salt concentrations demonstrates that keratohyalin (KH) is extracted by these salts at certain molarities. Under given conditions of time and temperature, each salt has a specific extraction pattern, and similar salts have similar extraction patterns. Dialysis of the salt extracts of hoof epidermis against distilled water results in the macroaggregition of KH, as assayed by histochemical methods. Although the various macroaggregates appear identical at the histochemical level, they display different ultrastructural characteristics. Polyacrylamide gel electrophoresis of the sodium decyl sulfate-solubilized macroaggregates results in the fractionation of a 20 (or more) member homologous series of oligomers. Isolation of the various oligomeric species of bovine keratohyalin and re-electrophoresis indicate that the various KH species can undergo depolymerization. Amino acid analyses of the unfractionated bovine macroaggregates and the various molecular weight species of bovine KH are similar, further demonstrating homology of the oligomers. The molecular weight of the subunit (monomer) of bovine KH is 14,955, estimated from the amino acid analyses.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRODY I. An ultrastructural study on the role of the keratohyalin granules in the keratinization process. J Ultrastruct Res. 1959 Oct;3:84–104. doi: 10.1016/s0022-5320(59)80018-6. [DOI] [PubMed] [Google Scholar]
  2. Berlowitz L., Pallotta D., Pawlowski P. Isolated histone fractions and the alkaline fast green reaction. J Histochem Cytochem. 1970 May;18(5):334–339. doi: 10.1177/18.5.334. [DOI] [PubMed] [Google Scholar]
  3. Bernstein I. A., Chakrabarti S. G., Kumaroo K. K., Sibrack L. A. Synthesis of protein in the mammalian epidermis. J Invest Dermatol. 1970 Nov;55(5):291–302. doi: 10.1111/1523-1747.ep12260109. [DOI] [PubMed] [Google Scholar]
  4. Cox A. J., Reaven E. P. Histidine and keratohyalin granules. J Invest Dermatol. 1967 Jul;49(1):31–34. [PubMed] [Google Scholar]
  5. Farbman A. I. Morphological variability of keratohyalin. Anat Rec. 1966 Feb;154(2):275–285. doi: 10.1002/ar.1091540210. [DOI] [PubMed] [Google Scholar]
  6. Fukuyama K., Epstein W. L. Epidermal keratinization: localization of isotopically labeled amino acids. J Invest Dermatol. 1966 Dec;47(6):551–560. doi: 10.1038/jid.1966.184. [DOI] [PubMed] [Google Scholar]
  7. Gaitonde M. K., Dovey T. A rapid and direct method for the quantitative determination of tryptophan in the intact protein. Biochem J. 1970 May;117(5):907–911. doi: 10.1042/bj1170907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hicks R. M. Nature of the keratohyalin-like granules in hyperplastic and cornified areas of transitional epithelium in the vitamin A-deficient rat. J Anat. 1969 Mar;104(Pt 2):327–339. [PMC free article] [PubMed] [Google Scholar]
  9. Jessen H. Two types of keratohyalin granules. J Ultrastruct Res. 1970 Oct;33(1):95–115. doi: 10.1016/s0022-5320(70)90120-6. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Matoltsy A. G., Matoltsy M. N. The chemical nature of keratohyalin granules of the epidermis. J Cell Biol. 1970 Dec;47(3):593–603. doi: 10.1083/jcb.47.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rodbard D., Chrambach A. Estimation of molecular radius, free mobility, and valence using polyacylamide gel electrophoresis. Anal Biochem. 1971 Mar;40(1):95–134. doi: 10.1016/0003-2697(71)90086-8. [DOI] [PubMed] [Google Scholar]
  13. SMITH C., PARKHURST H. T. Studies on the thymus of the mammal; a comparison of the staining properties of Hassall's corpuscles and of thick skin of the guinea pig. Anat Rec. 1949 Apr;103(4):649–673. doi: 10.1002/ar.1091030405. [DOI] [PubMed] [Google Scholar]
  14. Sajdera S. W., Hascall V. C. Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J Biol Chem. 1969 Jan 10;244(1):77–87. [PubMed] [Google Scholar]
  15. Ugel A. R., Chrambach A., Rodbard D. Fractionation and characterization of an oligomeric series of bovine keratohyalin by polyacrylamide gel electrophoresis. Anal Biochem. 1971 Oct;43(2):410–426. doi: 10.1016/0003-2697(71)90271-5. [DOI] [PubMed] [Google Scholar]
  16. Ugel A. R., Idler W. Stratum granulosum: dissection from cattle hoof epidermis. J Invest Dermatol. 1970 Nov;55(5):350–353. doi: 10.1111/1523-1747.ep12260280. [DOI] [PubMed] [Google Scholar]
  17. Ugel A. R. Keratohyalin: extraction and in vitro aggregation. Science. 1969 Oct 10;166(3902):250–251. doi: 10.1126/science.166.3902.250. [DOI] [PubMed] [Google Scholar]
  18. Voorhees J. J., Chakrabarti S. G., Bernstein I. A. The metabolism of "histidine-rich" protein in normal and psoriatic keratinization. J Invest Dermatol. 1968 Nov;51(5):344–354. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES