Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Feb 1;52(2):292–307. doi: 10.1083/jcb.52.2.292

THE SYNTHESIS OF ACIDIC CHROMOSOMAL PROTEINS DURING THE CELL CYCLE OF HELA S-3 CELLS

I. The Accelerated Accumulation of Acidic Residual Nuclear Protein before the Initiation of DNA Replication

G S Stein 1, T W Borun 1
PMCID: PMC2108644  PMID: 5057976

Abstract

The synthesis and accumulation of acidic proteins in the tightly bound residual nuclear fraction goes on throughout the cell cycle of continuously dividing populations of HeLa S-3 cells; however, during late G1 there is an increased rate of synthesis and accumulation of these proteins which precedes the onset of DNA synthesis. Unlike that of the histones, whose synthesis is tightly coupled to DNA replication, the synthesis of acidic residual nuclear proteins is insensitive to inhibitors of DNA synthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of acidic residual nuclear proteins shows different profiles during the G1, S, and G2 phases of the cell cycle. These results suggest that, in contrast to histones whose synthesis appears to be highly regulated, the acidic residual proteins may have a regulatory function in the control of cell proliferation in continuously dividing mammalian cells.

Full Text

The Full Text of this article is available as a PDF (841.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOOTSMA D., BUDKE L., VOS O. STUDIES ON SYNCHRONOUS DIVISION OF TISSUE CULTURE CELLS INITIATED BY EXCESS THYMIDINE. Exp Cell Res. 1964 Jan;33:301–309. doi: 10.1016/s0014-4827(64)81035-1. [DOI] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker K. L. Estrogen-induced synthesis of histones and a specific nonhistone protein in the uterus. Biochemistry. 1971 Jan 19;10(2):284–291. doi: 10.1021/bi00778a014. [DOI] [PubMed] [Google Scholar]
  4. Borun T. W., Scharff M. D., Robbins E. Rapidly labeled, polyribosome-associated RNA having the properties of histone messenger. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1977–1983. doi: 10.1073/pnas.58.5.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHU M. Y., FISCHER G. A. A proposed mechanism of action of 1-beta-D-arabinofuranosyl-cytosine as an inhibitor of the growth of leukemic cells. Biochem Pharmacol. 1962 Jun;11:423–430. doi: 10.1016/0006-2952(62)90225-3. [DOI] [PubMed] [Google Scholar]
  6. CRAMPTON C. F., MOORE S., STEIN W. H. Chromatographic fractionation of calf thymus histone. J Biol Chem. 1955 Aug;215(2):787–801. [PubMed] [Google Scholar]
  7. Churchill J. R., Studzinski G. P. Thymidine as synchronizing agent. 3. Persistence of cell cycle patterns of phosphatase activities and elevation of nuclease activity during inhibition of DNA synthesis. J Cell Physiol. 1970 Jun;75(3):297–303. doi: 10.1002/jcp.1040750306. [DOI] [PubMed] [Google Scholar]
  8. DALY M. M., MIRSKY A. E., RIS H. The amino acid composition and some properties of histones. J Gen Physiol. 1951 Mar 20;34(4):439–450. doi: 10.1085/jgp.34.4.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  10. Elgin S. C., Bonner J. Limited heterogeneity of the major nonhistone chromosomal proteins. Biochemistry. 1970 Oct 27;9(22):4440–4447. doi: 10.1021/bi00824a027. [DOI] [PubMed] [Google Scholar]
  11. Gurley L. R., Hardin J. M. The metabolism of histone fractions. I. Synthesis of histone fractions during the life cycle of mammalian cells. Arch Biochem Biophys. 1968 Nov;128(2):285–292. doi: 10.1016/0003-9861(68)90034-9. [DOI] [PubMed] [Google Scholar]
  12. Hancock R. Conservation of histones in chromatin during growth and mitosis in vitro. J Mol Biol. 1969 Mar 28;40(3):457–466. doi: 10.1016/0022-2836(69)90165-x. [DOI] [PubMed] [Google Scholar]
  13. Johns E. W. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochem J. 1964 Jul;92(1):55–59. doi: 10.1042/bj0920055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lambert W. C., Studzinski G. P. Thymidine as a synchronizing agent. II. Partial recovery of HeLa cells from unbalanced growth. J Cell Physiol. 1969 Jun;73(3):261–266. doi: 10.1002/jcp.1040730310. [DOI] [PubMed] [Google Scholar]
  16. Maizel J. V., Jr Acrylamide-gel electrophorograms by mechanical fractionation: radioactive adenovirus proteins. Science. 1966 Feb 25;151(3713):988–990. doi: 10.1126/science.151.3713.988. [DOI] [PubMed] [Google Scholar]
  17. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  18. ROBBINS E., MARCUS P. I. MITOTICALLY SYNCHRONIZED MAMMALIAN CELLS: A SIMPLE METHOD FOR OBTAINING LARGE POPULATIONS. Science. 1964 May 29;144(3622):1152–1153. doi: 10.1126/science.144.3622.1152. [DOI] [PubMed] [Google Scholar]
  19. Robbins E., Borun T. W. The cytoplasmic synthesis of histones in hela cells and its temporal relationship to DNA replication. Proc Natl Acad Sci U S A. 1967 Feb;57(2):409–416. doi: 10.1073/pnas.57.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rovera G., Baserga R. Early changes in the synthesis of acidic nuclear proteins in human diploid fibroblasts stimulated to synthesize DNA by changing the medium. J Cell Physiol. 1971 Apr;77(2):201–211. doi: 10.1002/jcp.1040770211. [DOI] [PubMed] [Google Scholar]
  21. SCOTT J. F., FRACCASTORO A. P., TAFT E. B. Studies in histochemistry. I. Determination of nucleic acids in microgram amounts of tissue. J Histochem Cytochem. 1956 Jan;4(1):1–10. doi: 10.1177/4.1.1. [DOI] [PubMed] [Google Scholar]
  22. Sadgopal A., Bonner J. Chromosomal proteins of interphase HeLa cells. Biochim Biophys Acta. 1970 Apr 28;207(1):206–226. doi: 10.1016/0005-2795(70)90153-4. [DOI] [PubMed] [Google Scholar]
  23. Sadgopal A., Bonner J. Proteins of interphase and metaphase chromosomes compared. Biochim Biophys Acta. 1970 Apr 28;207(1):227–239. doi: 10.1016/0005-2795(70)90154-6. [DOI] [PubMed] [Google Scholar]
  24. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  25. Smith J. A., Martin L., King R. J., Vértes M. Effects of oestradiol-17-beta and progesterone on total and nuclear-protein synthesis in epithelial and stromal tissues of the mouse uterus, and of progesterone on the ability of these tissues to bind oestradiol-17-beta. Biochem J. 1970 Oct;119(4):773–784. doi: 10.1042/bj1190773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sonnenbichler J., Nobis P. The so-called non-histones from acid-treated calf thymus chromatin. Eur J Biochem. 1970 Sep;16(1):60–65. doi: 10.1111/j.1432-1033.1970.tb01053.x. [DOI] [PubMed] [Google Scholar]
  27. Spalding J., Kajiwara K., Mueller G. C. The metabolism of basic proteins in HeLa cell nuclei. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1535–1542. doi: 10.1073/pnas.56.5.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stein G., Baserga R. Continued synthesis of non-histone chromosomal proteins during mitosis. Biochem Biophys Res Commun. 1970 Nov 9;41(3):715–722. doi: 10.1016/0006-291x(70)90072-0. [DOI] [PubMed] [Google Scholar]
  29. Stein G., Baserga R. Cytoplamic synthesis of acidic chromosomal proteins. Biochem Biophys Res Commun. 1971 Jul 2;44(1):218–223. doi: 10.1016/s0006-291x(71)80181-x. [DOI] [PubMed] [Google Scholar]
  30. Stein G., Baserga R. The synthesis of acidic nuclear proteins in the prereplicative phase of the isoproterenol-stimulated salivary gland. J Biol Chem. 1970 Nov 25;245(22):6097–6105. [PubMed] [Google Scholar]
  31. Stellwagen R. H., Cole R. D. Histone biosynthesis in the mammary gland during development and lactation. J Biol Chem. 1969 Sep 25;244(18):4878–4887. [PubMed] [Google Scholar]
  32. TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
  33. Teng C. S., Hamilton T. H. Role of chromatin in estrogen action in the uterus. II. Hormone-induced synthesis of nonhistone acidic proteins which restore histone-inhibited DNA-dependent RNA synthesis. Proc Natl Acad Sci U S A. 1969 Jun;63(2):465–472. doi: 10.1073/pnas.63.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. XEROS N. Deoxyriboside control and synchronization of mitosis. Nature. 1962 May 19;194:682–683. doi: 10.1038/194682a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES