Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Mar 1;52(3):598–614. doi: 10.1083/jcb.52.3.598

EFFECTS OF CHLORAMPHENICOL ON CHLOROPLAST AND MITOCHONDRIAL ULTRASTRUCTURE IN OCHROMONAS DANICA

Heidi Smith-Johannsen 1, Sarah P Gibbs 1
PMCID: PMC2108651  PMID: 5009522

Abstract

The effect of chloramphenicol (CAP) on cell division and organelle ultrastructure was studied during light-induced chloroplast development in the Chrysophyte alga, Ochromonas danica. Since the growth rate of the CAP-treated cells is the same as that of the control cells for the first 12 hr in the light, CAP is presumed to be acting during that interval solely by inhibiting protein synthesis on chloroplast and mitochondrial ribosomes. CAP markedly inhibits chloroplast growth and differentiation. During the first 12 hr in the light, chlorophyll synthesis is inhibited by 93%, the formation of new thylakoid membranes is reduced by 91%, and the synthesis of chloroplast ribosomes is inhibited by 81%. Other chloroplast-associated abnormalities which occur during the first 12 hr and become more pronounced with extended CAP treatment are the presence of prolamellar bodies and of abnormal stacks of thylakoids, the proliferation of the perinuclear reticulum, and the accumulation of dense granular material between the chloroplast envelope and the chloroplast endoplasmic reticulum. CAP also causes a progressive loss of the mitochondrial cristae, which is paralleled by a decline in the growth rate of the cells, but it has no effect on the synthesis of mitochondrial ribosomes. We postulate that one or more chloroplast ribosomal proteins are synthesized on chloroplast ribosomes, whereas mitochondrial ribosomal proteins are synthesized on cytoplasmic ribosomes.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong J. J., Moll B., Surzycki S. J., Levine R. P. Genetic transcription and translation specifying chloroplast components in Chlamydomonas reinhardi. Biochemistry. 1971 Feb 16;10(4):692–701. doi: 10.1021/bi00780a022. [DOI] [PubMed] [Google Scholar]
  2. Ashwell M., Work T. S. The biogenesis of mitochondria. Annu Rev Biochem. 1970;39:251–290. doi: 10.1146/annurev.bi.39.070170.001343. [DOI] [PubMed] [Google Scholar]
  3. Beattie D. S. Studies on the biogenesis of mitochondrial protein components in rat liver slices. J Biol Chem. 1968 Aug 10;243(15):4027–4033. [PubMed] [Google Scholar]
  4. Ben-Shaul Y., Markus Y. Effects of chloramphenicol on growth, size distribution, chlorophyll synthesis and ultrastructure of Euglena gracilis. J Cell Sci. 1969 May;4(3):627–644. doi: 10.1242/jcs.4.3.627. [DOI] [PubMed] [Google Scholar]
  5. Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells. J Cell Biol. 1967 Jul;34(1):1–14. doi: 10.1083/jcb.34.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davey P. J., Yu R., Linnane A. W. The intracellular site of formation of the mitochondrial protein synthetic system. Biochem Biophys Res Commun. 1969 Jul 7;36(1):30–34. doi: 10.1016/0006-291x(69)90644-5. [DOI] [PubMed] [Google Scholar]
  7. EISENSTADT J. M., BRAWERMAN G. THE PROTEIN-SYNTHESIZING SYSTEMS FROM THE CYTOPLASM AND THE CHLOROPLASTS OF EUGLENA GRACILIS. J Mol Biol. 1964 Dec;10:392–402. doi: 10.1016/s0022-2836(64)80060-7. [DOI] [PubMed] [Google Scholar]
  8. Ellis R. J., Hartley M. R. Sites of synthesis of chloroplast proteins. Nature. 1971 Oct 13;233(5320):193–196. [PubMed] [Google Scholar]
  9. Firkin F. C., Linnane A. W. Biogenesis of mitochondria. 8. The effect of chloramphenicol on regenerating rat liver. Exp Cell Res. 1969 Apr;55(1):68–76. doi: 10.1016/0014-4827(69)90457-1. [DOI] [PubMed] [Google Scholar]
  10. Firkin F. C., Linnane A. W. Differential effects of chloramphenicol on the growth and respiration of mammalian cells. Biochem Biophys Res Commun. 1968 Aug 13;32(3):398–402. doi: 10.1016/0006-291x(68)90674-8. [DOI] [PubMed] [Google Scholar]
  11. Freeman K. B., Haldar D. The inhibition of mammalian mitochondrial NADH oxidation by chloramphenicol and its isomers and analogues. Can J Biochem. 1968 Sep;46(9):1003–1008. doi: 10.1139/o68-151. [DOI] [PubMed] [Google Scholar]
  12. GIBBS S. P. Chloroplast development in Ochromonas danica. J Cell Biol. 1962 Nov;15:343–361. doi: 10.1083/jcb.15.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HANSON J. B., HODGES T. K. UNCOUPLING ACTION OF CHLORAMPHENICOL AS A BASIS FOR THE INHIBITION OF ION ACCUMULATION. Nature. 1963 Dec 7;200:1009–1009. doi: 10.1038/2001009a0. [DOI] [PubMed] [Google Scholar]
  14. Hoober J. K., Siekevitz P., Palade G. E. Formation of chloroplast membranes in Chlamydomonas reinhardi y-1. Effects of inhibitors of protein synthesis. J Biol Chem. 1969 May 25;244(10):2621–2631. [PubMed] [Google Scholar]
  15. Hudock G. A., McLeod G. C., Moravkova-Kiely J., Levine R. P. The Relation of Oxygen Evolution to Chlorophyll and Protein Synthesis in a Mutant Strain of Chlamydomonas reinhardi. Plant Physiol. 1964 Nov;39(6):898–903. doi: 10.1104/pp.39.6.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kellerman G. M., Biggs D. R., Linnane A. W. Biogenesis of mitochondria. XI. A comparison of the effects of growth-limiting oxygen tension, intercalating agents, and antibiotics on the obligate aerobe Candida parapsilosis. J Cell Biol. 1969 Aug;42(2):378–391. doi: 10.1083/jcb.42.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Küntzel H. Proteins of mitochondrial and cytoplasmic ribosomes from Neurospora crassa. Nature. 1969 Apr 12;222(5189):142–146. doi: 10.1038/222142a0. [DOI] [PubMed] [Google Scholar]
  18. Lamb A. J., Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics. Biochim Biophys Acta. 1968 Jul 23;161(2):415–427. [PubMed] [Google Scholar]
  19. Manning J. E., Wolstenholme D. R., Ryan R. S., Hunter J. A., Richards O. C. Circular chloroplast DNA from Euglena gracilis. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1169–1173. doi: 10.1073/pnas.68.6.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Margulies M. M. Effect of Chloramphenicol on Formation of Chloroplast Structure and Protein During Greening of Etiolated Leaves of Phaseolus vulgaris. Plant Physiol. 1966 Jun;41(6):992–1003. doi: 10.1104/pp.41.6.992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neupert W., Sebald W., Schwab A. J., Pfaller A., Bücher T. Puromycin sensitivity of ribosomal label after incorporation of 14C-labelled amino acids into isolated mitochondria from Neurospora crassa. Eur J Biochem. 1969 Oct;10(3):585–588. doi: 10.1111/j.1432-1033.1969.tb00729.x. [DOI] [PubMed] [Google Scholar]
  22. Sinclair J. H., Stevens B. J. Circular DNA filaments from mouse mitochondria. Proc Natl Acad Sci U S A. 1966 Aug;56(2):508–514. doi: 10.1073/pnas.56.2.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smillie R. M., Graham D., Dwyer M. R., Grieve A., Tobin N. F. Evidence for the synthesis in vivo of proteins of the Calvin cycle and of the photosynthetic electron-transfer pathway on chloroplast ribosomes. Biochem Biophys Res Commun. 1967 Aug 23;28(4):604–610. doi: 10.1016/0006-291x(67)90356-7. [DOI] [PubMed] [Google Scholar]
  24. Smith U., Smith D. S., Yunis A. A. Chloramphenicol-related changes in mitochondrial ultrastructure. J Cell Sci. 1970 Sep;7(2):501–521. doi: 10.1242/jcs.7.2.501. [DOI] [PubMed] [Google Scholar]
  25. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  26. Tewari K. K., Wildman S. G. Information content in the chloroplast DNA. Symp Soc Exp Biol. 1970;24:147–179. [PubMed] [Google Scholar]
  27. Turner G., Lloyd D. The effect of growth with chloramphenicol on the mitochondria of Tetrahymena pyriformis strain ST. Biochem J. 1970 Feb;116(4):41P–41P. doi: 10.1042/bj1160041p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wells R., Birnstiel M. Kinetic complexity of chloroplastal deoxyribonucleic acid and mitochondrial deoxyribonucleic acid from higher plants. Biochem J. 1969 May;112(5):777–786. doi: 10.1042/bj1120777. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES