Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Mar 1;52(3):733–742. doi: 10.1083/jcb.52.3.733

ONTOGENETIC CHANGES OF PROTEINS OF ENDOPLASMIC RETICULUM

Owen Black Jr 1, Edward Bresnick 1
PMCID: PMC2108653  PMID: 5009525

Abstract

The proteins of the smooth and rough endoplasmic reticulum from fetal, immature, and adult male rats were compared after incorporation of two radioactively labeled precursors, 14C-labeled amino acids and δ-aminolevulinic acid-3H by means of gel electrophoresis. The labeling patterns indicated that protein components present in two major electrophoretic bands underwent significant synthesis in fetal tissue while three actively incorporating protein bands were noted in adult tissue. Although the uptake of the amino acids-14C decreased for the smooth and rough elements of the endoplasmic reticulum as a whole during liver development, the qualitative patterns were not significantly different in adult and fetal livers. The over-all incorporation (disintegrations per minute per milligram protein) of the heme precursor into the smooth and rough elements also did not change with development. However, a change was noted in the distributional electrophoretic patterns with development. The estimation of molecular weight (by disc electrophoresis) and the incorporation of the heme precursor suggested the similarity of the two major protein bands to cytochrome P-450 and cytochrome b 5, components of the endoplasmic reticulum, thought to be involved in the mixed-function oxidase system. The evidence indicated that in fetal liver, at a time when the oxidase capability was low, the amino acid incorporation into these two protein groups was the same as in the adult. The incorporation of the heme moiety, however, was different, decreasing in the cytochrome b 5 region and increasing in the cytochrome P-450 region during development. These results correlate with the increase in oxidase activity associated with liver development.

Full Text

The Full Text of this article is available as a PDF (488.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURRASTON J., POLLAK J. K. Amino acid incorporation into embryonic rat liver. Exp Cell Res. 1961 Dec;25:687–690. doi: 10.1016/0014-4827(61)90199-9. [DOI] [PubMed] [Google Scholar]
  2. Bock K. W., Siekevitz P. Turnover of heme and protein moieties of rat liver microsomal cytochrome b5. Biochem Biophys Res Commun. 1970 Oct 23;41(2):374–380. doi: 10.1016/0006-291x(70)90514-0. [DOI] [PubMed] [Google Scholar]
  3. Bresnick E., Stevenson J. G. Microsomal N-demethylase activity in developing rat liver after administration of 3-methylcholanthrene. Biochem Pharmacol. 1968 Sep;17(9):1815–1822. doi: 10.1016/0006-2952(68)90097-x. [DOI] [PubMed] [Google Scholar]
  4. Conney A. H. Pharmacological implications of microsomal enzyme induction. Pharmacol Rev. 1967 Sep;19(3):317–366. [PubMed] [Google Scholar]
  5. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):97–117. doi: 10.1083/jcb.30.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dallner G., Siekevitz P., Palade G. E. Synthesis of microsomal membranes and their enzymic constituents in developing rat liver. Biochem Biophys Res Commun. 1965 Jul 12;20(2):135–141. doi: 10.1016/0006-291x(65)90336-0. [DOI] [PubMed] [Google Scholar]
  8. Estabrook R. W., Franklin M. R., Cohen B., Shigamatzu A., Hildebrandt A. G. Biochemical and genetic factors influencing drug metabolism. Influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism. 1971 Feb;20(2):187–199. doi: 10.1016/0026-0495(71)90091-6. [DOI] [PubMed] [Google Scholar]
  9. FOUTS J. R., ADAMSON R. H. Drug metabolism in the newborn rabbit. Science. 1959 Apr 3;129(3353):897–898. doi: 10.1126/science.129.3353.897. [DOI] [PubMed] [Google Scholar]
  10. Greim H., Schenkman J. B., Klotzbücher M., Remmer H. The influence of phenobarbital on the turnover of hepatic microsomal cytochrome b5 and cytochrome P-450 hemes in the rat. Biochim Biophys Acta. 1970 Jan 27;201(1):20–25. doi: 10.1016/0304-4165(70)90005-x. [DOI] [PubMed] [Google Scholar]
  11. HART L. G., ADAMSON R. H., DIXON R. L., FOUTS J. R. Stimulation of hepatic microsomal drug metabolism in the newborn and fetal rabbit. J Pharmacol Exp Ther. 1962 Jul;137:103–106. [PubMed] [Google Scholar]
  12. Hara T., Minakami S. Presence of apo-cytochrome beta 5 in microsomes. Incorporation of radioactive heme to the cytochrome in vitro. J Biochem. 1970 May;67(5):741–743. doi: 10.1093/oxfordjournals.jbchem.a129303. [DOI] [PubMed] [Google Scholar]
  13. Hinman N. D., Phillips A. H. Similarity and limited multiplicity of membrane proteins from rough and smooth endoplasmic reticulum. Science. 1970 Dec 11;170(3963):1222–1223. doi: 10.1126/science.170.3963.1222. [DOI] [PubMed] [Google Scholar]
  14. Ito A., Sato R. Purification by means of detergents and properties of cytochrome b5 from liver microsomes. J Biol Chem. 1968 Sep 25;243(18):4922–4923. [PubMed] [Google Scholar]
  15. KATO R., VASSANELLI P., FRONTINO G., CHIESARA E. VARIATION IN THE ACTIVITY OF LIVER MICROSOMAL DRUG-METABOLIZING ENZYMES IN RATS IN RELATION TO THE AGE. Biochem Pharmacol. 1964 Jul;13:1037–1051. doi: 10.1016/0006-2952(64)90100-5. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Levin W., Alvares A. P., Kuntzman R. Distribution of radioactive hemoprotein and CO-binding pigment in rough and smooth endoplasmic reticulum of rat liver. Arch Biochem Biophys. 1970 Jul;139(1):230–235. doi: 10.1016/0003-9861(70)90065-2. [DOI] [PubMed] [Google Scholar]
  18. NEMETH A. M. Enzyme formation in developing mammalian liver. Biochim Biophys Acta. 1961 Mar 18;48:189–191. doi: 10.1016/0006-3002(61)90532-7. [DOI] [PubMed] [Google Scholar]
  19. Nebert D. W., Gelboin H. V. The in vivo and in vitro induction of aryl hydrocarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal states. Arch Biochem Biophys. 1969 Oct;134(1):76–89. doi: 10.1016/0003-9861(69)90253-7. [DOI] [PubMed] [Google Scholar]
  20. Nebert D. W. Microsomal cytochromes b5 and P450 during induction of aryl hydrocarbon hydroxylase activity in mammalian cell culture. J Biol Chem. 1970 Feb 10;245(3):519–527. [PubMed] [Google Scholar]
  21. Negishi M., Omura T. Presence of apo-cytochrome beta 5 in microsomes from rat liver. J Biochem. 1970 May;67(5):745–747. doi: 10.1093/oxfordjournals.jbchem.a129304. [DOI] [PubMed] [Google Scholar]
  22. Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
  23. Raftell M., Perlmann P. Antigen development in neonatal rat liver. Exp Cell Res. 1968 Feb;49(2):317–331. doi: 10.1016/0014-4827(68)90183-3. [DOI] [PubMed] [Google Scholar]
  24. STRITTMATTER P. The nature of the heme binding in microsomal cytochrome b5. J Biol Chem. 1960 Aug;235:2492–2497. [PubMed] [Google Scholar]
  25. STRITTMATTER P., VELICK S. F. The isolation and properties of microsomal cytochrome. J Biol Chem. 1956 Jul;221(1):253–264. [PubMed] [Google Scholar]
  26. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  27. Spatz L., Strittmatter P. A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci U S A. 1971 May;68(5):1042–1046. doi: 10.1073/pnas.68.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strittmatter C. F., Umberger F. T. Oxidative enzyme components of avian liver microsomes. Changes during embryonic development and the effects of phenobarbital administration. Biochim Biophys Acta. 1969 May;180(1):18–27. doi: 10.1016/0005-2728(69)90189-3. [DOI] [PubMed] [Google Scholar]
  29. Süss R., Blobel G., Pitot H. C. Rat liver and hepatoma polysome-membrane interaction in vitro. Biochem Biophys Res Commun. 1966 May 3;23(3):299–304. doi: 10.1016/0006-291x(66)90545-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES