Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Mar 1;52(3):690–718. doi: 10.1083/jcb.52.3.690

SARCOPLASMIC RETICULUM AND EXCITATION-CONTRACTION COUPLING IN MAMMALIAN SMOOTH MUSCLES

Carrick E Devine 1, Avril V Somlyo 1, Andrew P Somlyo 1
PMCID: PMC2108662  PMID: 5061887

Abstract

The sarcoplasmic reticulum (SR) was studied in the smooth muscles of rabbit main pulmonary artery, mesenteric vein, aorta, mesenteric artery, taenia coli, guinea pig mesenteric artery, and human uterus, and correlated with contractions of the smooth muscles in Ca-free media. SR volumes were determined in main pulmonary artery (5.1%), aorta (5%), portal-anterior mesenteric vein (2.2%), taenia coli (2%), and mesenteric artery (1.8%): because of tangentially sectioned membranes these estimates are subject to a correction factor of up to +50% of the values measured. Smooth muscles that contained a relatively large volume of SR maintained significant contractile responses to drugs in the virtual absence of extracellular calcium at room temperatures, while smooth muscles that had less SR did not. The unequal maximal contractions of main pulmonary artery elicited by different drugs were also observed in Ca-free, high potassium-depolarizing solution, indicating that they were secondary to some mechanism independent of changes in membrane potential or calcium influx. Longitudinal tubules of SR run between and are fenestrated about groups of surface vesicles separated from each other by intervening dense bodies. Extracellular markers (ferritin and lanthanum) entered the surface vesicles, but not the SR. The peripheral SR formed couplings with the surface membrane: the two membranes were separated by gaps of approximately 10 nm traversed by electron-opaque connections suggestive of a periodicity of approximately 20–25 nm. These couplings are considered to be the probable sites of electromechanical coupling in twitch smooth muscles. Close contacts between the SR and the surface vesicles may have a similar function, or represent sites of calcium extrusion. The presence of both thick and thin myofilaments and of rough SR in smooth muscles supports the dual, contractile and morphogenetic, function of smooth muscle.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIERRING F., KOBAYASI T. Electron microscopy of the normal rabbit aorta. Acta Pathol Microbiol Scand. 1963;57:154–168. doi: 10.1111/j.1699-0463.1963.tb03440.x. [DOI] [PubMed] [Google Scholar]
  2. Bianchi C. P., Bolton T. C. Effect of thiocyanate on radiocalcium uptake during potassium contracture of frog sartorius muscle. J Pharmacol Exp Ther. 1966 Mar;151(3):456–463. [PubMed] [Google Scholar]
  3. Bozler E. Role of calcium in initiation of activity of smooth muscle. Am J Physiol. 1969 Mar;216(3):671–674. doi: 10.1152/ajplegacy.1969.216.3.671. [DOI] [PubMed] [Google Scholar]
  4. Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CAESAR R., EDWARDS G. A., RUSKA H. Architecture and nerve supply of mammalian smooth muscle tissue. J Biophys Biochem Cytol. 1957 Nov 25;3(6):867–878. doi: 10.1083/jcb.3.6.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cliff W. J. The aortic tunica media in aging rats. Exp Mol Pathol. 1970 Oct;13(2):172–189. doi: 10.1016/0014-4800(70)90004-3. [DOI] [PubMed] [Google Scholar]
  7. Cliff W. J. The aortic tunica media in growing rats studied with the electron microscope. Lab Invest. 1967 Dec;17(6):599–615. [PubMed] [Google Scholar]
  8. Cobb J. L., Bennett T. A study of intercellular relationships in developing and mature visceral smooth muscle. Z Zellforsch Mikrosk Anat. 1969 Sep 22;100(4):516–526. doi: 10.1007/BF00344372. [DOI] [PubMed] [Google Scholar]
  9. Devine C. E., Simpson F. O., Bertaud W. S. Surface features of smooth muscle cells from the mesenteric artery and vas deferens. J Cell Sci. 1971 Mar;8(2):427–443. doi: 10.1242/jcs.8.2.427. [DOI] [PubMed] [Google Scholar]
  10. Devine C. E., Somlyo A. P. Thick filaments in vascular smooth muscle. J Cell Biol. 1971 Jun;49(3):636–649. doi: 10.1083/jcb.49.3.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dewey M. M., Barr L. Intercellular Connection between Smooth Muscle Cells: the Nexus. Science. 1962 Aug 31;137(3531):670–672. doi: 10.1126/science.137.3531.670-a. [DOI] [PubMed] [Google Scholar]
  12. EDMAN K. A., SCHILD H. O. The need for calcium in the contractile responses induced by acetylcholine and potassium in the rat uterus. J Physiol. 1962 May;161:424–441. doi: 10.1113/jphysiol.1962.sp006897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. EVANS D. H., SCHILD H. O., THESLEFF S. Effects of drugs on depolarized plain muscle. J Physiol. 1958 Oct 31;143(3):474–485. doi: 10.1113/jphysiol.1958.sp006072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edge M. B. Development of apposed sarcoplasmic reticulum at the T system and sarcolemma and the change in orientation of triads in rat skeletal muscle. Dev Biol. 1970 Dec;23(4):634–650. doi: 10.1016/0012-1606(70)90144-2. [DOI] [PubMed] [Google Scholar]
  15. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Forssmann W. G., Girardier L. A study of the T system in rat heart. J Cell Biol. 1970 Jan;44(1):1–19. doi: 10.1083/jcb.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Franzini-Armstrong C. Studies of the triad. II. Penetration of tracers into the junctional gap. J Cell Biol. 1971 Apr;49(1):196–203. doi: 10.1083/jcb.49.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gabella G. Caveolae intracellulares and sarcoplasmic reticulum in smooth muscle. J Cell Sci. 1971 May;8(3):601–609. doi: 10.1242/jcs.8.3.601. [DOI] [PubMed] [Google Scholar]
  19. Goodford P. J. The calcium content of the smooth muscle of the guinea-pig taenia coli. J Physiol. 1967 Sep;192(1):145–157. doi: 10.1113/jphysiol.1967.sp008293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goodman F. R., Weiss G. B. Effects of lanthanum on 45 Ca movements and on contractions induced by norepinephrine, histamine and potassium in vascular smooth muscle. J Pharmacol Exp Ther. 1971 May;177(2):415–425. [PubMed] [Google Scholar]
  21. Hurwitz L., Suria A. The link between agonist action and response in smooth muscle. Annu Rev Pharmacol. 1971;11:303–326. doi: 10.1146/annurev.pa.11.040171.001511. [DOI] [PubMed] [Google Scholar]
  22. Ishikawa H. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J Cell Biol. 1968 Jul;38(1):51–66. doi: 10.1083/jcb.38.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jones A. W., Karreman G. Ion exchange properties of the canine carotid artery. Biophys J. 1969 Jul;9(7):884–909. doi: 10.1016/S0006-3495(69)86425-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KARRER H. E. An electron microscope study of the aorta in young and in aging mice. J Ultrastruct Res. 1961 Mar;5:1–27. doi: 10.1016/s0022-5320(61)80002-6. [DOI] [PubMed] [Google Scholar]
  25. Keatinge W. R. Sodium flux and electrical activity of arterial smooth muscle. J Physiol. 1968 Jan;194(1):183–200. doi: 10.1113/jphysiol.1968.sp008401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Knoth M., Pattillo R. A., Garancis J. C., Gey G. O., Ruckert A. C., Mattingly R. F. Ultrastructure and hormone synthesis of choriocarcinoma in vitro. Am J Pathol. 1969 Mar;54(3):479–488. [PMC free article] [PubMed] [Google Scholar]
  27. LAGUENS R., LAGRUTTA J. FINE STRUCTURE OF HUMAN UTERINE MUSCLE IN PREGNANCY. Am J Obstet Gynecol. 1964 Aug 15;89:1040–1047. doi: 10.1016/0002-9378(64)90296-0. [DOI] [PubMed] [Google Scholar]
  28. PEACHEY L. D. ELECTRON MICROSCOPIC OBSERVATIONS ON THE ACCUMULATION OF DIVALENT CATIONS IN INTRAMITOCHONDRIAL GRANULES. J Cell Biol. 1964 Jan;20:95–111. doi: 10.1083/jcb.20.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Page E., McCallister L. P., Power B. Sterological measurements of cardiac ultrastructures implicated in excitation-contraction coupling. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1465–1466. doi: 10.1073/pnas.68.7.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peachey L. D. Muscle. Annu Rev Physiol. 1968;30:401–440. doi: 10.1146/annurev.ph.30.030168.002153. [DOI] [PubMed] [Google Scholar]
  31. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  32. Potter J. M., Sparrow M. P., Simmonds W. J. Increased uptake and efflux of calcium with acetylcholine stimulation in smooth muscle of toad stomach. Aust J Exp Biol Med Sci. 1970 Aug;48(4):429–443. doi: 10.1038/icb.1970.45. [DOI] [PubMed] [Google Scholar]
  33. Reale E., Ruska H. Die Feinstrucktur der Gefässwände. Angiologica. 1965;2(4):314–366. [PubMed] [Google Scholar]
  34. Revel J. P., Karnovsky M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3):C7–C12. doi: 10.1083/jcb.33.3.c7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rice R. V., McManus G. M., Devine O. F., Somlyo A. P. Regular organization of thick filaments in mammalian smooth muscle. Nat New Biol. 1971 Jun 23;231(25):242–243. doi: 10.1038/newbio231242a0. [DOI] [PubMed] [Google Scholar]
  36. Rice R. V., Moses J. A., McManus G. M., Brady A. C., Blasik L. M. The organization of contractile filaments in a mammalian smooth muscle. J Cell Biol. 1970 Oct;47(1):183–196. doi: 10.1083/jcb.47.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ross R., Klebanoff S. J. Fine structural changes in uterine smooth muscle and fibroblasts in response to estrogen. J Cell Biol. 1967 Jan;32(1):155–167. doi: 10.1083/jcb.32.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ross R., Klebanoff S. J. The smooth muscle cell. I. In vivo synthesis of connective tissue proteins. J Cell Biol. 1971 Jul;50(1):159–171. doi: 10.1083/jcb.50.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rubio R., Sperelakis N. Entrance of colloidal ThO2 tracer into the T tubules and longitudinal tubules of the guinea pig heart. Z Zellforsch Mikrosk Anat. 1971;116(1):20–36. doi: 10.1007/BF00332855. [DOI] [PubMed] [Google Scholar]
  41. SCHOENBERG C. F. An electron microscope study of smooth muscles in pregnant uterus of the rabbit. J Biophys Biochem Cytol. 1958 Sep 25;4(5):609–614. [PMC free article] [PubMed] [Google Scholar]
  42. Sachs E. S., Daems W. T. Microtubules in human aortic intimal cells. Z Zellforsch Mikrosk Anat. 1966 Aug 22;73(4):553–558. doi: 10.1007/BF00347083. [DOI] [PubMed] [Google Scholar]
  43. Sandow A. Skeletal muscle. Annu Rev Physiol. 1970;32:87–138. doi: 10.1146/annurev.ph.32.030170.000511. [DOI] [PubMed] [Google Scholar]
  44. Silva D. G., Ikeda M. Ultrastructural and acetylcholinesterase studies on the innervation of the ductus arteriosus, pulmonary trunk and aorta of the fetal lamb. J Ultrastruct Res. 1971 Feb;34(3):358–374. doi: 10.1016/s0022-5320(71)80078-3. [DOI] [PubMed] [Google Scholar]
  45. Somlyo A. P., Devine C. E., Somlyo A. V., North S. R. Sarcoplasmic reticulum and the temperature-dependent contraction of smooth muscle in calcium-free solutions. J Cell Biol. 1971 Dec;51(3):722–741. doi: 10.1083/jcb.51.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Somlyo A. P., Devine C. E., Somlyo A. V. Thick filaments in unstretched mammalian smooth muscle. Nature. 1971 Oct 13;233(5320):218–219. [PubMed] [Google Scholar]
  47. Somlyo A. P., Somlyo A. V., Devine C. E., Rice R. V. Aggregation of thick filaments into ribbons in mammalian smooth muscle. Nat New Biol. 1971 Jun 23;231(25):243–246. doi: 10.1038/newbio231243a0. [DOI] [PubMed] [Google Scholar]
  48. Somlyo A. P., Somlyo A. V. Pharmacology of excitation-contraction coupling in vascular smooth muscle and in avian slow muscle. Fed Proc. 1969 Sep-Oct;28(5):1634–1642. [PubMed] [Google Scholar]
  49. Somlyo A. P., Somlyo A. V. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev. 1968 Dec;20(4):197–272. [PubMed] [Google Scholar]
  50. Somlyo A. P., Somlyo A. V. Vascular smooth muscle. II. Pharmacology of normal and hypotensive vessels. Pharmacol Rev. 1970 Jun;22(2):249–353. [PubMed] [Google Scholar]
  51. Somlyo A. V., Somlyo A. P. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther. 1968 Jan;159(1):129–145. [PubMed] [Google Scholar]
  52. Somlyo A. V., Somlyo A. P. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science. 1971 Nov 26;174(4012):955–958. doi: 10.1126/science.174.4012.955. [DOI] [PubMed] [Google Scholar]
  53. Somlyo A. V., Vinall P., Somlyo A. P. Excitation-contraction coupling and electrical events in two types of vascular smooth muscle. Microvasc Res. 1969 Oct;1(4):354–373. doi: 10.1016/0026-2862(69)90014-4. [DOI] [PubMed] [Google Scholar]
  54. Sommer J. R., Johnson E. A. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol. 1968 Mar;36(3):497–526. doi: 10.1083/jcb.36.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  56. Stein O., Eisenberg S., Stein Y. Aging of aortic smooth muscle cells in rats and rabbits. A morphologic and biochemical study. Lab Invest. 1969 Nov;21(5):386–397. [PubMed] [Google Scholar]
  57. Takagi K., Uchida M. Effecss of subcellular fractions of the dog small intestinal smooth muscle on acetylcholine-induced contraction of glycerol extracted skeletal muscle. Jpn J Pharmacol. 1970 Sep;20(3):448–450. doi: 10.1254/jjp.20.448. [DOI] [PubMed] [Google Scholar]
  58. Uehara Y., Burnstock G. Demonstration of "gap junctions" between smooth muscle cells. J Cell Biol. 1970 Jan;44(1):215–217. doi: 10.1083/jcb.44.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Uehara Y., Campbell G. R., Burnstock G. Cytoplasmic filaments in developing and adult vertebrate smooth muscle. J Cell Biol. 1971 Aug;50(2):484–497. doi: 10.1083/jcb.50.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Van Breemen C., Lesser P. The absence of increased membrane calcium permeability during norepinephrine stimulation of arterial smooth muscle. Microvasc Res. 1971 Jan;3(1):113–114. doi: 10.1016/0026-2862(71)90014-8. [DOI] [PubMed] [Google Scholar]
  61. Verity M. A., Bevan J. A. Fine structural study of the terminal effecror plexus, neuromuscular and intermuscular relationships in the pulmonary artery. J Anat. 1968 Jun;103(Pt 1):49–63. [PMC free article] [PubMed] [Google Scholar]
  62. Walker S. M., Schrodt G. R., Edge M. B. The density attached to the inside surface of the apposed sarcoplasmic reticular membrane in vertebrate cardiac and skeletal muscle fibres. J Anat. 1971 Feb;108(Pt 2):217–230. [PMC free article] [PubMed] [Google Scholar]
  63. Winegrad S. The intracellular site of calcium activaton of contraction in frog skeletal muscle. J Gen Physiol. 1970 Jan;55(1):77–88. doi: 10.1085/jgp.55.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES