Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Mar 1;52(3):626–638. doi: 10.1083/jcb.52.3.626

ELECTROMECHANICAL COUPLING IN TUBULAR MUSCLE FIBERS

I. The Organization of Tubular Muscle Fibers in the Scorpion Leiurus quinquestriatus

Arieh Gilai 1, I Parnas 1
PMCID: PMC2108664  PMID: 5009524

Abstract

The tubular fibers of the claw-closer muscle of the scorpion have a central core containing nuclei and mitochondria. The myofibrils have the shape of thin lamellae (1 µ) extending radially from the core to the surface membrane (20 µ). The thick myofilaments are organized in a hexagonal array with orbits of 10–13 thin myofilaments. The ratio of thick-to-thin filaments is 1:5. Transverse tubular system (TS) openings are located between lamellated myofibrils. In each sarcomere two TS's are found, one on each side of the H band. The TS is composed of a transverse tubule and tubular pockets (TP). The TP's form diadic contact with the terminal cisternae of the sarcoplasmic reticulum. The TS can be traced from the cell membrane down to the cell core. The surface area of the TS was calculated to be six times that of the outer surface membrane.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Chandler W. K., Hodgkin A. L. The kinetics of mechanical activation in frog muscle. J Physiol. 1969 Sep;204(1):207–230. doi: 10.1113/jphysiol.1969.sp008909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Costantin L. L., Peachey L. D. Radial spread of contraction in frog muscle fibres. J Physiol. 1969 Sep;204(1):231–257. doi: 10.1113/jphysiol.1969.sp008910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Costantin L. L. The role of sodium current in the radial spread of contraction in frog muscle fibers. J Gen Physiol. 1970 Jun;55(6):703–715. doi: 10.1085/jgp.55.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Endo M. Entry of fluorescent dyes into the sarcotubular system of the frog muscle. J Physiol. 1966 Jul;185(1):224–238. doi: 10.1113/jphysiol.1966.sp007983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FALK G., FATT P. LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69–123. doi: 10.1098/rspb.1964.0030. [DOI] [PubMed] [Google Scholar]
  6. FRANZINI-ARMSTRONG C., PORTER K. R. SARCOLEMMAL INVAGINATIONS CONSTITUTING THE T SYSTEM IN FISH MUSCLE FIBERS. J Cell Biol. 1964 Sep;22:675–696. doi: 10.1083/jcb.22.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Falk G. Predicted delays in the activation of the contractile system. Biophys J. 1968 May;8(5):608–625. doi: 10.1016/S0006-3495(68)86511-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Franzini-Armstrong C. STUDIES OF THE TRIAD : I. Structure of the Junction in Frog Twitch Fibers. J Cell Biol. 1970 Nov 1;47(2):488–499. doi: 10.1083/jcb.47.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HANSON J., LOWY J. Structure of smooth muscles. Nature. 1957 Nov 2;180(4592):906–909. doi: 10.1038/180906a0. [DOI] [PubMed] [Google Scholar]
  10. HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  12. Hagopian M., Spiro D. The sarcoplasmic reticulum and its association with the T system in an insect. J Cell Biol. 1967 Mar;32(3):535–545. doi: 10.1083/jcb.32.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hagopian M. The myofilament arrangement in the femoral muscle of the cockroach, Leucophaea maderae fabricius. J Cell Biol. 1966 Mar;28(3):545–562. doi: 10.1083/jcb.28.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoyle G. Comparative aspects of muscle. Annu Rev Physiol. 1969;31:43–84. doi: 10.1146/annurev.ph.31.030169.000355. [DOI] [PubMed] [Google Scholar]
  15. Hoyle G. Diversity of striated muscle. Am Zool. 1967 Aug;7(3):435–449. doi: 10.1093/icb/7.3.435. [DOI] [PubMed] [Google Scholar]
  16. Huddart H., Oates K. Ultrastructure of stick insect and locust skeletal muscle in relation to excitation-contraction coupling. J Insect Physiol. 1970 Aug;16(8):1467–1483. doi: 10.1016/0022-1910(70)90247-7. [DOI] [PubMed] [Google Scholar]
  17. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pasquali-Ronchetti I. The ultrastructural organization of femoral muscles in Musca domestica (Diptera). Tissue Cell. 1970;2(2):339–354. doi: 10.1016/s0040-8166(70)80024-6. [DOI] [PubMed] [Google Scholar]
  20. Peachey L. D. Muscle. Annu Rev Physiol. 1968;30:401–440. doi: 10.1146/annurev.ph.30.030168.002153. [DOI] [PubMed] [Google Scholar]
  21. Peachey L. D., Schild R. F. The distribution of the T-system along the sarcomeres of frog and toad sartorius muscles. J Physiol. 1968 Jan;194(1):249–258. doi: 10.1113/jphysiol.1968.sp008405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  23. Pepe F. A. The myosin filament. I. Structural organization from antibody staining observed in electron microscopy. J Mol Biol. 1967 Jul 28;27(2):203–225. doi: 10.1016/0022-2836(67)90016-2. [DOI] [PubMed] [Google Scholar]
  24. REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ROHLICH P. The fine structure of the muscle fiber of the leech, Hirudo medicinalis. J Ultrastruct Res. 1962 Dec;7:399–408. doi: 10.1016/s0022-5320(62)90036-9. [DOI] [PubMed] [Google Scholar]
  26. Rayns D. G., Simpson F. O., Bertaud W. S. Surface features of striated muscle. II. Guinea-pig skeletal muscle. J Cell Sci. 1968 Dec;3(4):475–482. doi: 10.1242/jcs.3.4.475. [DOI] [PubMed] [Google Scholar]
  27. Reger J. F., Cooper D. P. A comparative study on the fine structure of the basalar muscle of the wing and the tibial extensor muscle of the leg of the lepidopteran Achalarus lyciades. J Cell Biol. 1967 Jun;33(3):531–542. doi: 10.1083/jcb.33.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rosenbluth J. Sarcoplasmic reticulum of an unusually fast-acting crustacean muscle. J Cell Biol. 1969 Aug;42(2):534–547. doi: 10.1083/jcb.42.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosenbluth J. Ultrastructure of dyads in muscle fibers of Ascaris lumbricoides. J Cell Biol. 1969 Sep;42(3):817–825. doi: 10.1083/jcb.42.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. SMITH D. S. The organization of the flight muscle in a dragonfly, Aeshna sp. (Odonata). J Biophys Biochem Cytol. 1961 Oct;11:119–145. doi: 10.1083/jcb.11.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sandow A. Skeletal muscle. Annu Rev Physiol. 1970;32:87–138. doi: 10.1146/annurev.ph.32.030170.000511. [DOI] [PubMed] [Google Scholar]
  33. Schneider M. F. Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers. J Gen Physiol. 1970 Nov;56(5):640–671. doi: 10.1085/jgp.56.5.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith D. S. The organization and function of the sarcoplasmic reticulum and T-system of muscle cells. Prog Biophys Mol Biol. 1966;16:107–142. doi: 10.1016/0079-6107(66)90004-6. [DOI] [PubMed] [Google Scholar]
  35. Smith D. S. The organization of flight muscle fibers in the Odonata. J Cell Biol. 1966 Jan;28(1):109–126. doi: 10.1083/jcb.28.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smith D. S. The organization of flight muscle in an aphid, Megoura viciae (Homoptera). With a discussion on the structure of synchronous and asynchronous striated muscle fibers. J Cell Biol. 1965 Nov;27(2):379–393. doi: 10.1083/jcb.27.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smith D. S. The structure of intersegmental muscle fibers in an insect, Periplaneta americana L. J Cell Biol. 1966 Jun;29(3):449–459. doi: 10.1083/jcb.29.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES