Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Apr 1;53(1):24–37. doi: 10.1083/jcb.53.1.24

THE RESPONSE OF VENTRAL HORN NEURONS TO AXONAL TRANSECTION

Donald L Price 1, Keith R Porter 1
PMCID: PMC2108703  PMID: 4111146

Abstract

The morphological changes induced in the frog ventral horn neurons by axonal transection have been studied with the electron microscope. During the first 2 wk after axotomy the neuronal nucleus becomes more translucent and the nucleolus becomes enlarged and less compact. The cisternae of the granular endoplasmic reticulum vesiculate and ribosomes dissociate from membranes. Free ribosomes and polysomes are dispersed in the cytoplasmic matrix. Neurofilaments and neurotubules are increased in number. These structures appear to be important in the regeneration of the axon. It is proposed that neurotubules, neurofilaments, and axoplasmic matrix are synthesized by the free polyribosomes in the chromatolytic neuron. By the fourth postoperative week, the neurons show evidence of recovery. The cytoplasm is filled with profiles of granular endoplasmic reticulum and many intercisternal polysomes. The substances being manufactured by the newly formed granular endoplasmic reticulum are not clearly defined, but probably include elements essential to electrical and chemical conduction of impulses. The significance of these observations in respect to recent studies of axoplasmic flow is discussed.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BODIAN D. AN ELECTRON-MICROSCOPIC STUDY OF THE MONKEY SPINAL CORD. I. FINE STRUCTURE OF NORMAL MOTOR COLUMN. II. EFFECTS OF RETROGRADE CHROMATOLYSIS. III. CYTOLOGIC EFFECTS OF MILD AND VIRULENT POLIOVIRUS INFECTION. Bull Johns Hopkins Hosp. 1964 Jan;114:13–119. [PubMed] [Google Scholar]
  2. BRATTGARD S. O., EDSTROM J. E., HYDEN H. The chemical changes in regenerating neurons. J Neurochem. 1957;1(4):316–325. doi: 10.1111/j.1471-4159.1957.tb12088.x. [DOI] [PubMed] [Google Scholar]
  3. Cragg B. G. What is the signal for chromatolysis? Brain Res. 1970 Sep 29;23(1):1–21. doi: 10.1016/0006-8993(70)90345-8. [DOI] [PubMed] [Google Scholar]
  4. DROZ B., LEBLOND C. P. AXONAL MIGRATION OF PROTEINS IN THE CENTRAL NERVOUS SYSTEM AND PERIPHERAL NERVES AS SHOWN BY RADIOAUTOGRAPHY. J Comp Neurol. 1963 Dec;121:325–346. doi: 10.1002/cne.901210304. [DOI] [PubMed] [Google Scholar]
  5. Holtzman E., Novikoff A. B., Villaverde H. Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum. J Cell Biol. 1967 May;33(2):419–435. doi: 10.1083/jcb.33.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LYSER K. M. EARLY DIFFERENTIATION OF MOTOR NEUROBLASTS IN THE CHICK EMBRYO AS STUDIED BY ELECTRON MICROSCOPY. I. GENERAL ASPECTS. Dev Biol. 1964 Dec;10:433–466. doi: 10.1016/0012-1606(64)90054-5. [DOI] [PubMed] [Google Scholar]
  7. MACKEY E. A., SPIRO D., WIENER J. A STUDY OF CHROMATOLYSIS IN DORSAL ROOT GANGLIA AT THE CELLULAR LEVEL. J Neuropathol Exp Neurol. 1964 Jul;23:508–526. doi: 10.1097/00005072-196407000-00008. [DOI] [PubMed] [Google Scholar]
  8. McEwen B. S., Grafstein B. Fast and slow components in axonal transport of protein. J Cell Biol. 1968 Sep;38(3):494–508. doi: 10.1083/jcb.38.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mitchison J. M. Some functions of the nucleus. Int Rev Cytol. 1966;19:97–110. doi: 10.1016/s0074-7696(08)60565-3. [DOI] [PubMed] [Google Scholar]
  10. Murray M., Grafstein B. Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons. Exp Neurol. 1969 Apr;23(4):544–560. doi: 10.1016/0014-4886(69)90124-1. [DOI] [PubMed] [Google Scholar]
  11. PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PANNESE E. INVESTIGATIONS ON THE ULTRASTRUCTURAL CHANGES OF THE SPINAL GANGLION NEURONS IN THE COURSE OF AXON REGENERATION AND CELL HYPERTROPHY. I. CHANGES DURING AXON REGENERATION. Z Zellforsch Mikrosk Anat. 1963 Sep 3;60:711–740. doi: 10.1007/BF00343854. [DOI] [PubMed] [Google Scholar]
  13. SCHWARZACHER H. G. Der Cholinesterasegehalt motorischer Nervenzellen während der axonalen Reaktion. Acta Anat (Basel) 1958;32(1-2):51–65. [PubMed] [Google Scholar]
  14. Taylor A. C., Weiss P. Demonstration of axonal flow by the movement of tritium-labeled protein in mature optic nerve fibers. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1521–1527. doi: 10.1073/pnas.54.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Torvik A., Heding A. Effect of actinomycin D on retrograde nerve cell reaction. Further observations. Acta Neuropathol. 1969 Sep 9;14(1):62–71. doi: 10.1007/BF00687703. [DOI] [PubMed] [Google Scholar]
  16. Watson W. E. An autoradiographic study of the incorporation of nucleic-acid precursors by neurones and glia during nerve regeneration. J Physiol. 1965 Oct;180(4):741–753. doi: 10.1113/jphysiol.1965.sp007728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weiss P. Neuronal dynamics and axonal flow. 3. Cellulifugal transport of labeled neuroplasm in isolated nerve preparations. Proc Natl Acad Sci U S A. 1967 May;57(5):1239–1245. doi: 10.1073/pnas.57.5.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. von Gaudecker B. RNA synthesis in the nucleolus of Chironomus Thummi, as studied by high resolution autoradiography. Z Zellforsch Mikrosk Anat. 1967;82(4):536–557. doi: 10.1007/BF00337121. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES