Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Apr 1;53(1):127–142. doi: 10.1083/jcb.53.1.127

RESPIRATORY ENZYMES AND MITOCHONDRIAL MORPHOLOGY OF HELA AND L CELLS TREATED WITH CHLORAMPHENICOL AND ETHIDIUM BROMIDE

Mary E King 1, Gabriel C Godman 1, Donald W King 1
PMCID: PMC2108707  PMID: 4335248

Abstract

Exposure of HeLa and L cells to chloramphenicol causes a progressive dose-dependent decrease in cytochrome oxidase and succinate-cytochrome c reductase activities, concomitant with an increase in the amount of cytochrome c. At 2–3 days, the specific activities of the enzymes have fallen to about one-half of control values; the mitochondria appear swollen. By day 5, enzyme activities are about one-quarter of control values; the mitochondria are more swollen, with disorientation and disintegration of cristae. By day 6–8, after three generations, growth has stopped, enzyme activities are approximately the same as on day 5, and cytochrome c content has reached 170% of control value. Mitochondria show severe changes, cristae being affected more than peripheral inner membrane. The number of profiles continues to be nearly normal. After 30 days, cytochrome oxidase activity remains low but now there are mitochondria in intermediate and condensed configuration. There is a gradual accumulation in the cytoplasm of smooth membrane elements. If chloramphenicol is removed, cells recover. Ethidium bromide treatment for up to 8 days yields results virtually identical to those obtained with chloramphenicol. Cells treated with 10-4 M KCN show a decrease in cytochrome oxidase activity to about one-third of control value and an elevated amount of cytochrome c. Only a small number of mitochondria appear damaged. Autochthonous mitochondrial syntheses appear to be essential for the organization of the cristae. When cytochrome oxidase activity is impaired, a regulatory mechanism for cytochrome biosynthesis geared to mitochondrial function may be lacking, resulting in an increase in cytochrome c content.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADEBONOJO F. O., BENSCH K. G., KING D. W. The effect of nitrogen on the enzymatic pattern of strain L cells. Cancer Res. 1961 Feb;21:252–256. [PubMed] [Google Scholar]
  2. Bouteille M., Kalifat S. R., Delarue J. Ultrastructural variations of nuclear bodies in human diseases. J Ultrastruct Res. 1967 Aug 30;19(5):474–486. doi: 10.1016/s0022-5320(67)80074-1. [DOI] [PubMed] [Google Scholar]
  3. Carnevali F., Morpurgo G., Tecce G. Cytoplasmic DNA from petite colonies of Saccharomyces cerevisiae: a hypothesis on the nature of the mutation. Science. 1969 Mar 21;163(3873):1331–1333. doi: 10.1126/science.163.3873.1331. [DOI] [PubMed] [Google Scholar]
  4. Erlandson R. A., de Harven E. The ultrastructure of synchronized HeLa cells. J Cell Sci. 1971 Mar;8(2):353–397. doi: 10.1242/jcs.8.2.353. [DOI] [PubMed] [Google Scholar]
  5. Ernster L. Control of cell metabolism at the mitochondrial level. Fed Proc. 1965 Sep-Oct;24(5):1222–1236. [PubMed] [Google Scholar]
  6. Firkin F. C., Linnane A. W. Biogenesis of mitochondria. 8. The effect of chloramphenicol on regenerating rat liver. Exp Cell Res. 1969 Apr;55(1):68–76. doi: 10.1016/0014-4827(69)90457-1. [DOI] [PubMed] [Google Scholar]
  7. Firkin F. C., Linnane A. W. Differential effects of chloramphenicol on the growth and respiration of mammalian cells. Biochem Biophys Res Commun. 1968 Aug 13;32(3):398–402. doi: 10.1016/0006-291x(68)90674-8. [DOI] [PubMed] [Google Scholar]
  8. Firkin F. C., Linnane A. W. Phylogenetic differences in the sensitivity of mitochondrial protein synthesising systems to antibiotics. FEBS Lett. 1969 Mar;2(5):330–332. doi: 10.1016/0014-5793(69)80056-6. [DOI] [PubMed] [Google Scholar]
  9. Freeman K. B., Haldar D. The inhibition of NADH oxidation in mammalian mitochondria by chloramphenicol. Biochem Biophys Res Commun. 1967 Jul 10;28(1):8–12. doi: 10.1016/0006-291x(67)90397-x. [DOI] [PubMed] [Google Scholar]
  10. Freeman K. B., Haldar D., Work T. S. The morphological site of synthesis of cytochrome c in mammalian cells (Krebs cells). Biochem J. 1967 Dec;105(3):947–952. doi: 10.1042/bj1050947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GREEN D. E., MII S., KOHOUT P. M. Studies on the terminal electron transport system. I. Succinic dehydrogenase. J Biol Chem. 1955 Dec;217(2):551–567. [PubMed] [Google Scholar]
  12. Ghidoni J. J., Thomas H. Connection between a mitochondrion and endoplasmic reticulum in liver. Experientia. 1969 Jun 15;25(6):632–633. doi: 10.1007/BF01896559. [DOI] [PubMed] [Google Scholar]
  13. Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
  14. González-Cadavid N. F., Avil Bello E. M., Ramírez J. L. Differential long-term effects of D-chloramphenicol on the biogenesis of mitochondria in normal and regenerating rat liver. Biochem J. 1970 Jul;118(4):577–586. doi: 10.1042/bj1180577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. González-Cadavid N. F., Bravo M., Campbell P. N. The significance of cytochrome c redistribution during the subcellular fractionation of rat liver. Biochem J. 1968 Apr;107(4):523–529. doi: 10.1042/bj1070523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. González-Cadavid N. F., Campbell P. N. The biosynthesis of cytochrome c. Sequence of incorporation in vivo of [14C]lysine into cytochrome c and total proteins of rat-liver subcellular fractions. Biochem J. 1967 Nov;105(2):443–450. doi: 10.1042/bj1050443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Groot G. S., Kovác L., Schatz G. Promitochondria of anaerobically grown yeast. V. Energy transfer in the absence of an electron transfer chain. Proc Natl Acad Sci U S A. 1971 Feb;68(2):308–311. doi: 10.1073/pnas.68.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HAYWARD A. F. Variation in the fine structure of the mitochondria in the L-strain fibroblast. Exp Cell Res. 1961 Jun;24:198–200. doi: 10.1016/0014-4827(61)90274-9. [DOI] [PubMed] [Google Scholar]
  19. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hakami N., Pious D. A. Regulation of cytochrome oxidase in human cells in culture. Nature. 1967 Dec 16;216(5120):1087–1090. doi: 10.1038/2161087a0. [DOI] [PubMed] [Google Scholar]
  21. Henson C. P., Perlman P., Weber C. N., Mahler H. R. Formation of yeast mitochondria. II. Effects of antibiotics on enzyme activity during derepression. Biochemistry. 1968 Dec;7(12):4445–4454. doi: 10.1021/bi00852a041. [DOI] [PubMed] [Google Scholar]
  22. Hirsch J. G., Fedorko M. E. Ultrastructure of human leukocytes after simultaneous fixation with glutaraldehyde and osmium tetroxide and "postfixation" in uranyl acetate. J Cell Biol. 1968 Sep;38(3):615–627. doi: 10.1083/jcb.38.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. KROON A. M. Protein synthesis in heart mitochondria. I. Amino acid incorporation into the protein of isolated beefheart mitochondria and fractions derived from them by sonic oscillation. Biochim Biophys Acta. 1963 Jul 30;72:391–402. doi: 10.1016/0006-3002(63)90258-0. [DOI] [PubMed] [Google Scholar]
  24. Kadenbach B. A quantitative study of the biosynthesis of cytochrome c. Eur J Biochem. 1969 Sep;10(2):312–317. doi: 10.1111/j.1432-1033.1969.tb00691.x. [DOI] [PubMed] [Google Scholar]
  25. Kadenbach B. Biosynthesis of cytochrome c. The sites of synthesis of apoprotein and holoenzyme. Eur J Biochem. 1970 Feb;12(2):392–398. doi: 10.1111/j.1432-1033.1970.tb00864.x. [DOI] [PubMed] [Google Scholar]
  26. Kadenbach B. Synthesis of mitochondrial proteins. The synthesis of cytochrome c in vitro. Biochim Biophys Acta. 1967 May 30;138(3):651–654. doi: 10.1016/0005-2787(67)90574-6. [DOI] [PubMed] [Google Scholar]
  27. Kellerman G. M., Biggs D. R., Linnane A. W. Biogenesis of mitochondria. XI. A comparison of the effects of growth-limiting oxygen tension, intercalating agents, and antibiotics on the obligate aerobe Candida parapsilosis. J Cell Biol. 1969 Aug;42(2):378–391. doi: 10.1083/jcb.42.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. King M. E., King D. W. Effect of oxygen deficiency on cytochrome c, heme a, and iron protoporphyrin of L-cells. Arch Biochem Biophys. 1968 Sep 20;127(1):302–309. doi: 10.1016/0003-9861(68)90230-0. [DOI] [PubMed] [Google Scholar]
  29. King M. E., King D. W. Respiratory enzyme activity and mitochondrial morphology of L-cells under prolonged oxygen deprivation. Lab Invest. 1971 Nov;25(5):374–379. [PubMed] [Google Scholar]
  30. Kroon A. M., Jansen R. J. The effect of low concentrations of chlorampheicol on beating rat-heart cells in tissue culture. Biochim Biophys Acta. 1968 Feb 26;155(2):629–632. doi: 10.1016/0005-2787(68)90212-8. [DOI] [PubMed] [Google Scholar]
  31. LOUD A. V., BARANY W. C., PACK B. A. QUANTITATIVE EVALUATION OF CYTOPLASMIC STRUCTURES IN ELECTRON MICROGRAPHS. Lab Invest. 1965 Jun;14:996–1008. [PubMed] [Google Scholar]
  32. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  33. LUFT R., IKKOS D., PALMIERI G., ERNSTER L., AFZELIUS B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest. 1962 Sep;41:1776–1804. doi: 10.1172/JCI104637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lamb A. J., Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics. Biochim Biophys Acta. 1968 Jul 23;161(2):415–427. [PubMed] [Google Scholar]
  35. Mitchell M. B., Mitchell H. K., Tissieres A. Mendelian and Non-Mendelian Factors Affecting the Cytochrome System in Neurospora Crassa. Proc Natl Acad Sci U S A. 1953 Jul;39(7):606–613. doi: 10.1073/pnas.39.7.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nass M. M. Abnormal DNA patterns in animal mitochondria: ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomer accumulation. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1926–1933. doi: 10.1073/pnas.67.4.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smith U., Smith D. S., Yunis A. A. Chloramphenicol-related changes in mitochondrial ultrastructure. J Cell Sci. 1970 Sep;7(2):501–521. doi: 10.1242/jcs.7.2.501. [DOI] [PubMed] [Google Scholar]
  38. Tuppy H., Birkmayer G. D. Cytochrome oxidase apoprotein in "petite" mutant yeast mitochondria. Reconstitution of cytochrome oxidase by combining apoprotein with cytohemin. Eur J Biochem. 1969 Mar;8(2):237–243. doi: 10.1111/j.1432-1033.1969.tb00520.x. [DOI] [PubMed] [Google Scholar]
  39. Turner G., Lloyd D. The effect of growth with chloramphenicol on the mitochondria of Tetrahymena pyriformis strain ST. Biochem J. 1970 Feb;116(4):41P–41P. doi: 10.1042/bj1160041p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]
  41. Work T. S., Coote J. L., Ashwell M. Biogenesis of mitochondria. Fed Proc. 1968 Sep-Oct;27(5):1174–1179. [PubMed] [Google Scholar]
  42. de Vries H., Kroon A. M. On the effect of chloramphenicol and oxytetracycline on the biogenesis of mammalian mitochondria. Biochim Biophys Acta. 1970 Apr 15;204(2):531–541. doi: 10.1016/0005-2787(70)90173-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES