Abstract
The accumulation, metabolism, and distribution of acriflavin (acr) in two culture strains of Leishmania tarentolae were studied. One strain, reported previously, was sensitive to the dye, i.e. became dyskinetoplastic and could not be subcultured in the presence of 470 ng/ml acr, and one was resistant. Accumulation was studied by fluorescence of the dye within cells and by uptake of acr-3H by cells. Metabolism was studied by paper chromatography of aqueous extracts from cells grown with acr-3H, and distribution was examined by fluorescence and quantitative electron microscope radioautography. Substances affecting the response to acr included hemin and an acr-sensitizing factor initially obtained from red cells but here shown to be distinct from hemoglobin. In the presence of the sensitizing factor or in the absence of hemin, the resistant strain became dyskinetoplastic and could not be subcultured. Acr fluorescence appeared in the nucleus of the resistant strain, and the percentage of radioautography grains appearing in the nucleus increased. Under these conditions the distribution of radioactivity from chromatographed extracts was altered from the normal in a similar fashion. Because sensitization of the resistant strain is associated with increased amounts of acr in the nucleus, that organelle may be implicated in the mode of action of acr. In general, the two strains behaved alike except for (a) the response to acr, (b) the arginine requirement for optimal growth, and (c) the sensitivity to cycloheximide. Thus, one cannot exclude the wider possibility that acr may act on the cytoplasm and the nucleus as well as on the mitochondrion.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachmann L., Salpeter M. M., Salpeter E. E. Das Auflösungsvermögen elektronenmikroskopischer Autoradiographien. Histochemie. 1968;15(3):234–250. doi: 10.1007/BF00305888. [DOI] [PubMed] [Google Scholar]
- Bernhard S. A., Lee B. F., Tashjian Z. H. On the interaction of the active side of alpha-chymotrypsin with chromophores: proflavin binding and enzyme conformation during catalysis. J Mol Biol. 1966 Jul;18(3):405–420. doi: 10.1016/s0022-2836(66)80033-5. [DOI] [PubMed] [Google Scholar]
- Bishop D. G., Smillie R. M. The effect of chloramphenicol and cycloheximide on lipid synthesis during chloroplast development in Euglena gracilis. Arch Biochem Biophys. 1970 Jul;139(1):179–189. doi: 10.1016/0003-9861(70)90059-7. [DOI] [PubMed] [Google Scholar]
- DEANE M. P., KIRCHNER E. LIFE-CYCLE OF TRYPANOSOMA CONORHINI. INFLUENCE OF TEMPERATURE AND OTHER FACTORS ON GROWTH AND MORPHOGENESIS. J Protozool. 1963 Nov;10:391–399. doi: 10.1111/j.1550-7408.1963.tb01694.x. [DOI] [PubMed] [Google Scholar]
- Dozy A. M., Kleihauer E. F., Huisman T. H. Studies on the heterogeneity of hemoglobin. 13. Chromatography of various human and animal hemoglobin types on DEAE-Sephadex. J Chromatogr. 1968 Feb 20;32(4):723–727. doi: 10.1016/s0021-9673(01)80551-3. [DOI] [PubMed] [Google Scholar]
- Elorza M. V., Sentandreu R. Effect of cycloheximide on yeast cell wall synthesis. Biochem Biophys Res Commun. 1969 Aug 22;36(5):741–747. doi: 10.1016/0006-291x(69)90672-x. [DOI] [PubMed] [Google Scholar]
- Fukuhara H., Kujawa C. Selective inhibition of the in vivo transcription of mitochondrial DNA by ethidium bromide and by acriflavin. Biochem Biophys Res Commun. 1970 Nov 25;41(4):1002–1008. doi: 10.1016/0006-291x(70)90184-1. [DOI] [PubMed] [Google Scholar]
- Glazer A. N. Spectral studies of the interaction of alpha-chymotrypsin and trypsin with proflavine. Proc Natl Acad Sci U S A. 1965 Jul;54(1):171–176. doi: 10.1073/pnas.54.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guttman H. N., Eisenman R. N. Acriflavin-induced loss of kinetoplast deoxyribonucleic acid in Crithidia fasciculata (Culex pipiens strain). Nature. 1965 Sep 18;207(5003):1280–1281. doi: 10.1038/2071280a0. [DOI] [PubMed] [Google Scholar]
- Henderson P. J., Lardy H. A. Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem. 1970 Mar 25;245(6):1319–1326. [PubMed] [Google Scholar]
- Hill G. C., Anderson W. A. Effects of acriflavine on the mitochondria and kinetoplast of Crithidia fasciculata. Correlation of fine structure changes with decreased mitochondrial enzyme activity. J Cell Biol. 1969 May;41(2):547–561. doi: 10.1083/jcb.41.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill G. C., Anderson W. A. Parasitological review. Electron transport systems and mitochondrial DNA in Trypanosomatidae: a review. Exp Parasitol. 1970 Oct;28(2):356–380. doi: 10.1016/0014-4894(70)90104-9. [DOI] [PubMed] [Google Scholar]
- Huisman T. H., Adams H. R., Dimmock M. O., Edwards W. E., Wilson J. B. The structure of goat hemoglobins. I. Structural studies of the beta chains of the hemoglobins of normal and anemic goats. J Biol Chem. 1967 May 25;242(10):2534–2541. [PubMed] [Google Scholar]
- Huisman T. H., Dozy A. M. Studies on the heterogeneity of hemoglobin. IX. The use of Tris(hydroxymethyl)aminomethanehcl buffers in the anion-exchange chromatography of hemoglobins. J Chromatogr. 1965 Jul;19(1):160–169. doi: 10.1016/s0021-9673(01)99434-8. [DOI] [PubMed] [Google Scholar]
- LERMAN L. S. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961 Feb;3:18–30. doi: 10.1016/s0022-2836(61)80004-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lamb A. J., Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics. Biochim Biophys Acta. 1968 Jul 23;161(2):415–427. [PubMed] [Google Scholar]
- McIlwain H. A nutritional investigation of the antibacterial action of acriflavine. Biochem J. 1941 Dec;35(12):1310.1–131319. doi: 10.1042/bj0351310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer R. R., Simpson M. V. DNA biosynthesis in mitochondria. Differential inhibition of mitochondrial and nuclear DNA polymerases by the mutagenic dyes ethidium bromide and acriflavin. Biochem Biophys Res Commun. 1969 Jan 27;34(2):238–244. doi: 10.1016/0006-291x(69)90637-8. [DOI] [PubMed] [Google Scholar]
- NEWTON B. A. MECHANISMS OF ACTION OF PHENANTHRIDINE AND AMINOQUINALDINE TRYPANOCIDES. Adv Chemother. 1964;25:35–83. doi: 10.1016/b978-1-4831-9929-0.50008-5. [DOI] [PubMed] [Google Scholar]
- NEWTON B. A. The mode of action of phenanthridines: the effect of ethidium bromide on cell division and nucleic acid synthesis. J Gen Microbiol. 1957 Dec;17(3):718–730. doi: 10.1099/00221287-17-3-718. [DOI] [PubMed] [Google Scholar]
- Nagao M., Sugimura T. Selective inhibition by acriflavine of cytochrome a and b synthesis in yeast undergoing aerobic adaptation. Biochim Biophys Acta. 1965 Jun 8;103(2):353–355. doi: 10.1016/0005-2787(65)90179-6. [DOI] [PubMed] [Google Scholar]
- Nicholson B. H., Peacocke A. R. The inhibition of ribonucleic acid polymerase by acridines. Biochem J. 1966 Jul;100(1):50–58. doi: 10.1042/bj1000050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORMEROD W. E. The study of volutin granules in trypanosomes. Trans R Soc Trop Med Hyg. 1961 Jul;55:313–332. doi: 10.1016/0035-9203(61)90100-6. [DOI] [PubMed] [Google Scholar]
- Renger H. C., Wolstenholme D. R. Kinetoplast and other satellite DNAs of kinetoplastic and dyskinetoplastic strains of Trypanosoma. J Cell Biol. 1971 Aug;50(2):533–540. doi: 10.1083/jcb.50.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riou G. Specific inhibition by ethidium bromide of the incorporation of 3 H thymidine into the kinetoplastic DNA of Trypanosoma cruzi. Biochem Pharmacol. 1970 Apr;19(4):1524–1526. doi: 10.1016/0006-2952(70)90074-2. [DOI] [PubMed] [Google Scholar]
- SALPETER M. M., BACHMANN L. AUTORADIOGRAPHY WITH THE ELECTRON MICROSCOPE. A PROCEDURE FOR IMPROVING RESOLUTION, SENSITIVITY, AND CONTRAST. J Cell Biol. 1964 Aug;22:469–477. doi: 10.1083/jcb.22.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAUNDERS A. M. HISTOCHEMICAL IDENTIFICATION OF ACID MUCOPOLYSACCHARIDES WITH ACRIDINE ORANGE. J Histochem Cytochem. 1964 Mar;12:164–170. doi: 10.1177/12.3.164. [DOI] [PubMed] [Google Scholar]
- Salpeter M. M., Bachmann L., Salpeter E. E. Resolution in electron microscope radioautography. J Cell Biol. 1969 Apr;41(1):1–32. doi: 10.1083/jcb.41.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver S. Acridine sensitivity of bacteriophage T2: a virus gene affecting cell permeability. J Mol Biol. 1967 Oct 14;29(1):191–202. doi: 10.1016/0022-2836(67)90190-8. [DOI] [PubMed] [Google Scholar]
- Silver S., Levine E., Spielman P. M. Acridine binding by Escherichia coli: pH dependency and strain differences. J Bacteriol. 1968 Feb;95(2):333–339. doi: 10.1128/jb.95.2.333-339.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson L. Effect of acriflavin on the kinetoplast of Leishmania tarentolae. Mode of action and physiological correlates of the loss of kinetoplast DNA. J Cell Biol. 1968 Jun;37(3):660–682. doi: 10.1083/jcb.37.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinert M. Specific loss of kinetoplastic DNA in trypanosomatidae treated with ethidium bromide. Exp Cell Res. 1969 May;55(2):248–252. doi: 10.1016/0014-4827(69)90487-x. [DOI] [PubMed] [Google Scholar]
- Steinert M., Van Assel S., Steinert G. Etude, par autoradiographie, des effets du bromure d'éthidium sur la synthèse des acides nucléiques de Crithidia luciliae. Exp Cell Res. 1969 Jul;56(1):69–74. doi: 10.1016/0014-4827(69)90395-4. [DOI] [PubMed] [Google Scholar]
- Steinert M., Van Assel S. The loss of kinetoplastic DNA in two species of Trypanosomatidae treated with acriflavine. J Cell Biol. 1967 Aug;34(2):489–503. doi: 10.1083/jcb.34.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strauss P. R. The effect of homologous rabbit antiserum on the growth of Leishmania tarentolae--a fine structure study. J Protozool. 1971 Feb;18(1):147–156. doi: 10.1111/j.1550-7408.1971.tb03297.x. [DOI] [PubMed] [Google Scholar]
- Stuart K. D. Evidence for the retention of kinetoplast DNA in an acriflavine-induced dyskinetoplastic strain of Trypanosoma brucei which replicates the altered central element of the kinetoplast. J Cell Biol. 1971 Apr;49(1):189–195. doi: 10.1083/jcb.49.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRAGER W., RUDZINSKA M. A. THE RIBOFLAVIN REQUIREMENT AND THE EFFECTS OF ACRIFLAVIN ON THE FINE STRUCTURE OF THE KINETOPLAST OF LEISHMANIA TARENTOLAE. J Protozool. 1964 Feb;11:133–145. doi: 10.1111/j.1550-7408.1964.tb01734.x. [DOI] [PubMed] [Google Scholar]
- TUBBS R. K., DITMARS W. E., Jr, VANWINKLE Q. HETEROGENEITY OF THE INTERACTION OF DNA WITH ACRIFLAVINE. J Mol Biol. 1964 Aug;9:545–557. doi: 10.1016/s0022-2836(64)80226-6. [DOI] [PubMed] [Google Scholar]
- Weibel E. R., Kistler G. S., Scherle W. F. Practical stereological methods for morphometric cytology. J Cell Biol. 1966 Jul;30(1):23–38. doi: 10.1083/jcb.30.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein I. B., Finkelstein I. H. Proflavine inhibition of protein synthesis. J Biol Chem. 1967 Sep 10;242(17):3757–3762. [PubMed] [Google Scholar]
- Werenne J., Grosjean H., Chantrenne H. Effect of proflavine on the binding of isoleucine to transfer RNA. Biochim Biophys Acta. 1966 Dec 21;129(3):585–593. doi: 10.1016/0005-2787(66)90073-6. [DOI] [PubMed] [Google Scholar]
- Wilkie D. Selective inhibition of mitochondrial synthesis in Saccharomyces cerevisiae by canavanine. J Mol Biol. 1970 Jan 14;47(1):107–113. doi: 10.1016/0022-2836(70)90406-7. [DOI] [PubMed] [Google Scholar]
- YOTSUYANAGI Y. [Study of yeast mitochondria. II. Mitochondria of respiration-deficient mutants]. J Ultrastruct Res. 1962 Aug;7:141–158. doi: 10.1016/s0022-5320(62)80032-x. [DOI] [PubMed] [Google Scholar]