Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 May 1;53(2):271–289. doi: 10.1083/jcb.53.2.271

SPECIALIZED MEMBRANE JUNCTIONS BETWEEN NEURONS IN THE VERTEBRATE CEREBELLAR CORTEX

Constantino Sotelo 1, Rodolfo Llinás 1
PMCID: PMC2108717  PMID: 4537207

Abstract

"Gap" junctions, the morphological correlate for low-resistance junctions, are demonstrated between some mossy fiber terminals and granule cell dendrites in some lower vertebrate cerebella (gymnotid and frog). Most of the gap junctions (GJs) seen in the gymnotid-fish cerebellum exhibit an asymmetrical configuration, the electron-opaque cytoplasmic material underlying the junction being more extensive in the dendritic than in the axonal side. In the frog cerebellum, the GJs have a symmetrical distribution of such electron-opaque material. In both species the GJs are encountered at the same synaptic interface as the conventional synaptic zone (CSZ), constituting "mixed synapses" in a morphological sense. The axonal surface covered by CSZs is larger than that covered by GJs. In mammalian cerebellum, GJs are observed only in the molecular layer, between perikarya, dendrites, or perikarya and dendrites of the inhibitory interneurons. These GJs are intermixed with attachment plates and intermediary junctions interpreted as simply adhesive. In the mammalian cerebellum, a new type of junction which resembles the septate junctions (SJs) of invertebrate epithelia is observed between axonal branches forming the tip of the brush of basket fibers around the initial segment of the Purkinje cell axon. It is suggested that such junctions may be modified forms of septate junctions. The physiological implications of the possible existence of high-resistance cross-bridges between basket cell terminals, which may compartmentalize the extracellular space and thus regulate extracellular current flow, must be considered.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada Y., Bennett M. V. Experimental alteration of coupling resistance at an electrotonic synapse. J Cell Biol. 1971 Apr;49(1):159–172. doi: 10.1083/jcb.49.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barros C., Franklin L. E. Behavior of the gamete membranes during sperm entry into the mammalian egg. J Cell Biol. 1968 Jun;37(3):C13–C18. doi: 10.1083/jcb.37.3.c13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. V., Nakajima Y., Pappas G. D. Physiology and ultrastructure of electrotonic junctions. I. Supramedullary neurons. J Neurophysiol. 1967 Mar;30(2):161–179. doi: 10.1152/jn.1967.30.2.161. [DOI] [PubMed] [Google Scholar]
  4. Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan-Palay V., Palay S. L. Interrelations of basket cell axons and climbing fibers in the cerebellar cortex of the rat. Z Anat Entwicklungsgesch. 1970;132(3):191–227. doi: 10.1007/BF00523377. [DOI] [PubMed] [Google Scholar]
  6. Danilova L. V., Rokhlenko K. D., Bodryagina A. V. Electron microscopic study on the structure of septate and comb desmosomes. Z Zellforsch Mikrosk Anat. 1969;100(1):101–117. doi: 10.1007/BF00343824. [DOI] [PubMed] [Google Scholar]
  7. Eccles J. C., Llinás R., Sasaki K. The inhibitory interneurones within the cerebellar cortex. Exp Brain Res. 1966;1(1):1–16. doi: 10.1007/BF00235206. [DOI] [PubMed] [Google Scholar]
  8. FURUKAWA T., FURSHPAN E. J. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J Neurophysiol. 1963 Jan;26:140–176. doi: 10.1152/jn.1963.26.1.140. [DOI] [PubMed] [Google Scholar]
  9. Fox C. A., Hillman D. E., Siegesmund K. A., Dutta C. R. The primate cerebellar cortex: a Golgi and electron microscopic study. Prog Brain Res. 1967;25:174–225. doi: 10.1016/S0079-6123(08)60965-6. [DOI] [PubMed] [Google Scholar]
  10. GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
  11. Gilula N. B., Branton D., Satir P. The septate junction: a structural basis for intercellular coupling. Proc Natl Acad Sci U S A. 1970 Sep;67(1):213–220. doi: 10.1073/pnas.67.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hillman D. E. Morphological organization of frog cerebellar cortex: a light and electron microscopic study. J Neurophysiol. 1969 Nov;32(6):818–846. doi: 10.1152/jn.1969.32.6.818. [DOI] [PubMed] [Google Scholar]
  13. Hudspeth A. J., Revel J. P. Coexistence of gap and sseptate junctions in an invertebrate epithelium. J Cell Biol. 1971 Jul;50(1):92–101. doi: 10.1083/jcb.50.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hámori J., Szentágothai J. The Purkinje cell baskets: ultrastructure of an inhibitory synapse. Acta Biol Acad Sci Hung. 1965;15(4):465–479. [PubMed] [Google Scholar]
  15. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOEWENSTEIN W. R., KANNO Y. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. I. MODIFICATIONS OF SURFACE MEMBRANE PERMEABILITY. J Cell Biol. 1964 Sep;22:565–586. doi: 10.1083/jcb.22.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Larramendi E. M., Victor T. Synapses on the Purkinje cell spines in the mouse. An electronmicroscopic study. Brain Res. 1967 May;5(1):15–30. doi: 10.1016/0006-8993(67)90216-8. [DOI] [PubMed] [Google Scholar]
  18. Loewenstein W. R. Permeability of membrane junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):441–472. doi: 10.1111/j.1749-6632.1966.tb50175.x. [DOI] [PubMed] [Google Scholar]
  19. Pappas G. D., Asada Y., Bennett M. V. Morphological correlates of increased coupling resistance at an electrotonic synapse. J Cell Biol. 1971 Apr;49(1):173–188. doi: 10.1083/jcb.49.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pappas G. D., Bennett M. V. Specialized junctions involved in electrical transmission between neurons. Ann N Y Acad Sci. 1966 Jul 14;137(2):495–508. doi: 10.1111/j.1749-6632.1966.tb50177.x. [DOI] [PubMed] [Google Scholar]
  21. Payton B. W., Bennett M. V., Pappas G. D. Permeability and structure of junctional membranes at an electrotonic synapse. Science. 1969 Dec 26;166(3913):1641–1643. doi: 10.1126/science.166.3913.1641. [DOI] [PubMed] [Google Scholar]
  22. Precht W., Llinás R. Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat. Exp Brain Res. 1969 Aug 19;9(1):30–52. doi: 10.1007/BF00235450. [DOI] [PubMed] [Google Scholar]
  23. ROBERTSON J. D. THE OCCURRENCE OF A SUBUNIT PATTERN IN THE UNIT MEMBRANES OF CLUB ENDINGS IN MAUTHNER CELL SYNAPSES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:201–221. doi: 10.1083/jcb.19.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Revel J. P., Karnovsky M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3):C7–C12. doi: 10.1083/jcb.33.3.c7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rovainen C. M. Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus). II. Dorsal cells and giant interneurons. J Neurophysiol. 1967 Sep;30(5):1024–1042. doi: 10.1152/jn.1967.30.5.1024. [DOI] [PubMed] [Google Scholar]
  26. Sotelo C., Palay S. L. The fine structure of the later vestibular nucleus in the rat. II. Synaptic organization. Brain Res. 1970 Feb 17;18(1):93–115. doi: 10.1016/0006-8993(70)90459-2. [DOI] [PubMed] [Google Scholar]
  27. Sotelo C., Taxi J. Ultrastructural aspects of electrotonic junctions in the spinal cord of the frog. Brain Res. 1970 Jan 6;17(1):137–141. doi: 10.1016/0006-8993(70)90315-x. [DOI] [PubMed] [Google Scholar]
  28. Trinkaus J. P., Lentz T. L. Surface specializations of Fundulus cells and their relation to cell movements during gastrulation. J Cell Biol. 1967 Jan;32(1):139–153. doi: 10.1083/jcb.32.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WIENER J., SPIRO D., LOEWENSTEIN W. R. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. II. SURFACE STRUCTURE. J Cell Biol. 1964 Sep;22:587–598. doi: 10.1083/jcb.22.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. WOOD R. L. Intercellular attachment in the epithelium of Hydra as revealed by electron microscopy. J Biophys Biochem Cytol. 1959 Dec;6:343–352. doi: 10.1083/jcb.6.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES