Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 May 1;53(2):365–392. doi: 10.1083/jcb.53.2.365

PERMEABILITY OF INTESTINAL CAPILLARIES

Pathway followed by Dextrans and Glycogens

Nicolae Simionescu 1, Maia Simionescu 1, George E Palade 1
PMCID: PMC2108730  PMID: 4112540

Abstract

The pathway followed by macromolecules across the wall of visceral capillaries has been studied by using a set of tracers of graded sizes, ranging in diameter from 100 A (ferritin) to 300 A (glycogen). Polysaccharide particles, i.e. dextran 75 (mol wt ∼75,000; diam ∼125 A), dextran 250 (mol wt 250,000; diam ∼225 A), shellfish glycogen (diam ∼200 A) and rabbit liver glycogen (diam ∼300 A), are well tolerated by Wistar-Furth rats and give no vascular reactions ascribable to histamine release. Good definition and high contrast of the tracer particles were obtained in a one-step fixation—in block staining of the tissues by a mixture containing aldehydes, OsO4 and lead citrate in phosphate or arsenate buffer, pH 7.4, followed by lead staining of sections. The glycogens and dextrans used move out of the plasma through the fenestrae and channels of the endothelium relatively fast (3–7 min) and create in the pericapillary spaces transient (2–5 min) concentration gradients centered on the fenestrated sectors of the capillary walls. The tracers also gained access to the plasmalemmal vesicles, first on the blood front and subsequently on the tissue front of the endothelium. The particles are temporarily retained by the basement membrane. No probe moved through the intercellular junctions. It is concluded that, in visceral capillaries, the fenestrae, channels, and plasmalemmal vesicles, viewed as related parts in a system of dynamic structures, are the structural equivalent of the large pore system.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREW W., ANDREW N. V. An age involution in the small intestine of the mouse; with a description of the fundamental process of lymphoepithelial metamorphosis in intestinal mucosa. J Gerontol. 1957 Apr;12(2):136–149. doi: 10.1093/geronj/12.2.136. [DOI] [PubMed] [Google Scholar]
  2. BENNETT H. S., LUFT J. H., HAMPTON J. C. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959 Feb;196(2):381–390. doi: 10.1152/ajplegacy.1959.196.2.381. [DOI] [PubMed] [Google Scholar]
  3. Bruns R. R., Palade G. E. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol. 1968 May;37(2):244–276. doi: 10.1083/jcb.37.2.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clementi F., Palade G. E. Intestinal capillaries. I. Permeability to peroxidase and ferritin. J Cell Biol. 1969 Apr;41(1):33–58. doi: 10.1083/jcb.41.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clementi F., Palade G. E. Intestinal capillaries. II. Structural effects ofEDTA and histamine. J Cell Biol. 1969 Sep;42(3):706–714. doi: 10.1083/jcb.42.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FRASCA J. M., PARKS V. R. A ROUTINE TECHNIQUE FOR DOUBLE-STAINING ULTRATHIN SECTIONS USING URANYL AND LEAD SALTS. J Cell Biol. 1965 Apr;25:157–161. doi: 10.1083/jcb.25.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernandez L. A., Rettori O., Mejía R. H. Correlation between body fluid volumes and body weight in the rat. Am J Physiol. 1966 Apr;210(4):877–879. doi: 10.1152/ajplegacy.1966.210.4.877. [DOI] [PubMed] [Google Scholar]
  9. Friederici H. H. On the diaphragm across fenestrae of capillary endothelium. J Ultrastruct Res. 1969 May;27(3):373–375. doi: 10.1016/s0022-5320(69)80024-9. [DOI] [PubMed] [Google Scholar]
  10. Friederici H. H. The tridimensional ultrastructure of fenestrated capillaries. J Ultrastruct Res. 1968 Jun;23(5):444–456. doi: 10.1016/s0022-5320(68)80109-1. [DOI] [PubMed] [Google Scholar]
  11. GROTTE G. Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand Suppl. 1956;211:1–84. [PubMed] [Google Scholar]
  12. LAURENT T. C. THE INTERACTION BETWEEN POLYSACCHARIDES AND OTHER MACROMOLECULES. 5. THE SOLUBILITY OF PROTEINS IN THE PRESENCE OF DEXTRAN. Biochem J. 1963 Nov;89:253–257. doi: 10.1042/bj0890253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Luft J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966 Nov-Dec;25(6):1773–1783. [PubMed] [Google Scholar]
  15. Maul G. G. Structure and formation of pores in fenestrated capillaries. J Ultrastruct Res. 1971 Sep;36(5):768–782. doi: 10.1016/s0022-5320(71)90030-x. [DOI] [PubMed] [Google Scholar]
  16. Palade G. E., Bruns R. R. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968 Jun;37(3):633–649. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RENKIN E. M. TRANSPORT OF LARGE MOLECULES ACROSS CAPILLARY WALLS. Physiologist. 1964 Feb;60:13–28. [PubMed] [Google Scholar]
  18. RHODIN J. A. The diaphragm of capillary endothelial fenestrations. J Ultrastruct Res. 1962 Apr;6:171–185. doi: 10.1016/s0022-5320(62)90052-7. [DOI] [PubMed] [Google Scholar]
  19. SEMPLE R. E. Effect of small infusions of various dextran solutions on normal animals. Am J Physiol. 1954 Jan;176(1):113–119. doi: 10.1152/ajplegacy.1953.176.1.113. [DOI] [PubMed] [Google Scholar]
  20. Simionescu N., Palade G. E. Dextrans and glycogens as particulate tracers for studying capillary permeability. J Cell Biol. 1971 Sep;50(3):616–624. doi: 10.1083/jcb.50.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vye M. V., Fischman D. A. The morphological alteration of particulate glycogen by en bloc staining with uranyl acetate. J Ultrastruct Res. 1970 Nov;33(3):278–291. doi: 10.1016/s0022-5320(70)90022-5. [DOI] [PubMed] [Google Scholar]
  23. WANG L. Plasma volume, cell volume, total blood volume and F cells factor in the normal and splenectomized Sherman rat. Am J Physiol. 1959 Jan;196(1):188–192. doi: 10.1152/ajplegacy.1958.196.1.188. [DOI] [PubMed] [Google Scholar]
  24. WASSERMAN K., MAYERSON H. S. Relative importance of dextran molecular size in plasma volume expansion. Am J Physiol. 1954 Jan;176(1):104–112. doi: 10.1152/ajplegacy.1953.176.1.104. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES