Abstract
The first cleavage furrow in eggs of Arbacia (sea urchin) is accompanied by a uniform ring of aligned microfilaments, called the contractile ring. Individual contractile ring filaments measure 35–60 A and occasionally appear "hollow." The contractile ring exists from about 20 sec after anaphase to the end of furrowing activity, i.e., 6–7 min at 20°C. It is closely associated with the plasma membrane at all times, and is probably assembled there. It is about 8 µ wide and 0.2 µ thick throughout cleavage. Its volume decreases, however, suggesting a contraction-related disassembly of contractile ring filaments, rather than a sliding-filament mechanism in the strict sense. Cytochalasin B (>10-6 M) arrests cleavage within 60 sec, by which time contractile ring filaments are no longer visible ultrastructurally. The furrow may be seen to recede within this time. Karyokinesis is unaffected. Simultaneous disruption of furrowing activity and of the contractile ring largely confirms the vital role of the contractile ring as the organelle of cell cleavage.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J Cell Biol. 1968 May;37(2):514–539. doi: 10.1083/jcb.37.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnold J. M. Cleavage furrow formation in a telolecithal egg (Loligo pealii). I. Filaments in early furrow formation. J Cell Biol. 1969 Jun;41(3):894–904. doi: 10.1083/jcb.41.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bluemink J. G. The first cleavage of the amphibian egg. An electron microscope study of the onset of cytokinesis in the egg of Ambystoma mexicanum. J Ultrastruct Res. 1970 Jul;32(1):142–166. doi: 10.1016/s0022-5320(70)80042-9. [DOI] [PubMed] [Google Scholar]
- Byers B., Abramson D. H. Cytokinesis in HeLa: post-telophase delay and microtubule-associated motility. Protoplasma. 1968;66(4):413–435. doi: 10.1007/BF01255868. [DOI] [PubMed] [Google Scholar]
- Carter S. B. Effects of cytochalasins on mammalian cells. Nature. 1967 Jan 21;213(5073):261–264. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
- Cloney R. A. Cytoplasmic filaments and cell movements: epidermal cells during ascidian metamorphosis. J Ultrastruct Res. 1966 Feb;14(3):300–328. doi: 10.1016/s0022-5320(66)80051-5. [DOI] [PubMed] [Google Scholar]
- Cloney R. A. Cytoplasmic filaments and morphogenesis: the role of the notochord in ascidian metamorphosis. Z Zellforsch Mikrosk Anat. 1969;100(1):31–53. doi: 10.1007/BF00343819. [DOI] [PubMed] [Google Scholar]
- Estensen R. D. Cytochalasin B. I. Effect on cytokinesis of Novikoff hepatoma cells. Proc Soc Exp Biol Med. 1971 Apr;136(4):1256–1260. doi: 10.3181/00379727-136-35470. [DOI] [PubMed] [Google Scholar]
- Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gingell D. Contractile responses at the surface of an amphibian egg. J Embryol Exp Morphol. 1970 Jun;23(3):583–609. [PubMed] [Google Scholar]
- HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
- Hammer M. G., Sheridan J. D., Estensen R. D. Cytochalasin B II: selective inhibition of cytokinesis in Xenopus laevis eggs. Proc Soc Exp Biol Med. 1971 Apr;136(4):1158–1162. doi: 10.3181/00379727-136-35450. [DOI] [PubMed] [Google Scholar]
- Hinds J. W., Ruffett T. L. Cell proliferation in the neural tube: an electron microscopic and golgi analysis in the mouse cerebral vesicle. Z Zellforsch Mikrosk Anat. 1971;115(2):226–264. doi: 10.1007/BF00391127. [DOI] [PubMed] [Google Scholar]
- Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
- Krishan A. Fine structure of cytochalasin-induced multinucleated cells. J Ultrastruct Res. 1971 Jul;36(1):191–204. doi: 10.1016/s0022-5320(71)80097-7. [DOI] [PubMed] [Google Scholar]
- Krishan A., Ray-Chaudhuri R. Asynchrony of nuclear development in cytochalasin-induced multinucleate cells. J Cell Biol. 1969 Dec;43(3):618–621. doi: 10.1083/jcb.43.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luckenbill L. M. Dense material associated with wound closure in the axolotl egg (A. mexicanum). Exp Cell Res. 1971 May;66(1):263–267. doi: 10.1016/s0014-4827(71)80039-3. [DOI] [PubMed] [Google Scholar]
- RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
- Rappaport R. Cytokinesis in animal cells. Int Rev Cytol. 1971;31:169–213. doi: 10.1016/s0074-7696(08)60059-5. [DOI] [PubMed] [Google Scholar]
- Rappaport R. Geometrical relations of the cleavage stimulus in invertebrate eggs. J Theor Biol. 1965 Jul;9(1):51–66. doi: 10.1016/0022-5193(65)90056-1. [DOI] [PubMed] [Google Scholar]
- Schroeder T. E. Cytokinesis: filaments in the cleavage furrow. Exp Cell Res. 1968 Oct;53(1):272–276. doi: 10.1016/0014-4827(68)90373-x. [DOI] [PubMed] [Google Scholar]
- Schroeder T. E. Mechanisms of morphogenesis: the embryonic neural tube. Int J Neurosci. 1971 Nov;2(4):183–197. doi: 10.3109/00207457109147001. [DOI] [PubMed] [Google Scholar]
- Schroeder T. E. Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J Embryol Exp Morphol. 1970 Apr;23(2):427–462. [PubMed] [Google Scholar]
- Schroeder T. E. The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z Zellforsch Mikrosk Anat. 1970;109(4):431–449. [PubMed] [Google Scholar]
- Scott D. G., Daniel C. W. Filaments in the division furrow of mouse mammary cells. J Cell Biol. 1970 May;45(2):461–466. doi: 10.1083/jcb.45.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selman G. G., Perry M. M. Ultrastructural changes in the surface layers of the newt's egg in relation to the mechanism of its cleavage. J Cell Sci. 1970 Jan;6(1):207–227. doi: 10.1242/jcs.6.1.207. [DOI] [PubMed] [Google Scholar]
- Szollosi D. Cortical cytoplasmic filaments of cleaving eggs: a structural element corresponding to the contractile ring. J Cell Biol. 1970 Jan;44(1):192–209. doi: 10.1083/jcb.44.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Marsland D. A fine structural analysis of cleavage induction and furrowing in the eggs of Arbacia punctulata. J Cell Biol. 1969 Jul;42(1):170–184. doi: 10.1083/jcb.42.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tucker J. B. Microtubules and a contractile ring of microfilaments associated with a cleavage furrow. J Cell Sci. 1971 Mar;8(2):557–571. doi: 10.1242/jcs.8.2.557. [DOI] [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]