Abstract
N-acetylneuraminic acid at the surfaces of rat cerebral cortex and liver mitochondria and derived mitoplasts (inner membrane plus matrix particles) was studied biochemically and electrokinetically. Rat cerebral cortex mitochondria in 0.0145 M NaCl, 4.5% sorbitol, pH 7.2 ± 0.1, 0.6 mM NaHCO3, had an electrophoretic mobility of - 2.88 ± 0.01 µ/sec per v per cm. In the same solution the electrophoretic mobility of rat liver mitochondria was - 2.01 ± 0.02, of rat liver mitoplasts was - 1.22 ± 0.07, and of rat cerebral cortex mitoplasts - 0.91 ± 0.04 µ/sec per v per cm. Treatment of these particles with 50 µg neuraminidase/mg particle protein resulted in the following electrophoretic mobilities in µ/sec per v per cm: rat cerebral cortex mitochondria, - 2.27; rat liver mitochondria, - 1.40; rat cerebral cortex mitoplasts, - 0.78; and rat liver mitoplasts, - 1.10. Rat liver mitochondria, mitoplasts, and outer mitochondrial membranes contained 2.0, 1.1, and 4.1 nmoles of sialic acid/mg protein, respectively. 10% of the liver mitochondrial protein and 27.5% of the sialic acid was solubilized in the mitoplast and outer membrane isolation procedure. Rat cerebral cortex mitochondria, mitoplasts, and outer mitochondrial membranes contained 3.1, 0.8, and 6.2 nmoles sialic acid/mg protein, respectively; 10% of the brain mitochondrial protein and 49 % of the sialic acid was solubilized in the mitoplast and outer membrane isolation solution procedure. Treatment of both the rat liver and cerebral cortex mitochondria with 50 µg neuraminidase (dry weight) /mg protein resulted in the release of about 50% of the available outer membrane sialic acid residues. Treatment of all of the particles with trypsin caused release of sialic acid but did not greatly affect the particle electrophoretic mobility. In each instance, curves of pH vs. electrophoretic mobility indicated that the particle surface contained an acid dissociable group, most likely a carboxyl group of sialic acid with pKa ∼ 2.7. Treatment of either the rat liver or the cerebral cortex mitochondria with trypsinized concanavalin A did not affect the particle electrophoretic mobility but did cause a decrease in the electrophoretic mobility of L5178Y mouse leukemic cells.
Full Text
The Full Text of this article is available as a PDF (829.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashwell M., Work T. S. The biogenesis of mitochondria. Annu Rev Biochem. 1970;39:251–290. doi: 10.1146/annurev.bi.39.070170.001343. [DOI] [PubMed] [Google Scholar]
- Bosmann H. B., Carlson W. Identification of sialic acid at the nerve ending periphery and electrophoretic mobility of isolated synaptosomes. Exp Cell Res. 1972 Jun;72(2):436–440. doi: 10.1016/0014-4827(72)90012-2. [DOI] [PubMed] [Google Scholar]
- Bosmann H. B., Case K. R. Mitochondrial autonomy: incorporation of monosaccharides into endogenous glycolipid acceptors in isolated rat liver mitochondria. Biochem Biophys Res Commun. 1969 Aug 22;36(5):830–837. doi: 10.1016/0006-291x(69)90684-6. [DOI] [PubMed] [Google Scholar]
- Bosmann H. B., Hagopian A., Eylar E. H. Cellular membranes: the isolation and characterization of the plasma and smooth membranes of HeLa cells. Arch Biochem Biophys. 1968 Oct;128(1):51–69. doi: 10.1016/0003-9861(68)90008-8. [DOI] [PubMed] [Google Scholar]
- Bosmann H. B., Hemsworth B. A. Intraneural mitochondria. Incorporation of amino acids and monosaccharides into macromolecules by isolated synaptosomes and synaptosomal mitochondria. J Biol Chem. 1970 Jan 25;245(2):363–371. [PubMed] [Google Scholar]
- Bosmann H. B., Martin S. S. Mitochondrial autonomy: incorporation of monosaccharides into glycoprotein by isolated mitochondria. Science. 1969 Apr 11;164(3876):190–192. doi: 10.1126/science.164.3876.190. [DOI] [PubMed] [Google Scholar]
- Bosmann H. B. Mechanism of cellular drug resistance. Nature. 1971 Oct 22;233(5321):566–569. doi: 10.1038/233566a0. [DOI] [PubMed] [Google Scholar]
- Bosmann H. B. Mitochondrial biochemical events in a synchronized mammalian cell population. J Biol Chem. 1971 Jun 25;246(12):3817–3823. [PubMed] [Google Scholar]
- Bosmann H. B. Protein catabolism: activities of three proteolytic enzymes in a synchronized L5178Y mouse leukemic cell line. Int J Protein Res. 1971;3(5):271–276. doi: 10.1111/j.1399-3011.1971.tb01720.x. [DOI] [PubMed] [Google Scholar]
- Bosmann H. B., Winston R. A. Synthesis of glycoprotein, glycolipid, protein, and lipid in synchronized L5178Y cells. J Cell Biol. 1970 Apr;45(1):23–33. doi: 10.1083/jcb.45.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cline M. J., Livingston D. C. Binding of 3 H-concanavalin A by normal and transformed cells. Nat New Biol. 1971 Aug 4;232(31):155–156. doi: 10.1038/newbio232155a0. [DOI] [PubMed] [Google Scholar]
- Cook G. M. Chemistry of membranes. Br Med Bull. 1968 May;24(2):118–123. doi: 10.1093/oxfordjournals.bmb.a070611. [DOI] [PubMed] [Google Scholar]
- Coote J. L., Work T. S. Proteins coded by mitochondrial DNA of mammalian cells. Eur J Biochem. 1971 Dec 10;23(3):564–574. doi: 10.1111/j.1432-1033.1971.tb01655.x. [DOI] [PubMed] [Google Scholar]
- FISCHER G. A., SARTORELLI A. C. DEVELOPMENT, MAINTENANCE AND ASSAY OF DRUG RESISTANCE. Methods Med Res. 1964;10:247–262. [PubMed] [Google Scholar]
- HEARD D. H., SEAMAN G. V. The influence of pH and ionic strength on the electrokinetic stability of the human erythrocyte membrane. J Gen Physiol. 1960 Jan;43:635–654. doi: 10.1085/jgp.43.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidrich H. G., Stahn R., Hannig K. The surface charge of rat liver mitochondria and their membranes. Clarification of some controversies concerning mitochondrial structure. J Cell Biol. 1970 Jul;46(1):137–150. doi: 10.1083/jcb.46.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inbar M., Sachs L. Structural difference in sites on the surface membrane of normal and transformed cells. Nature. 1969 Aug 16;223(5207):710–712. doi: 10.1038/223710a0. [DOI] [PubMed] [Google Scholar]
- Kraemer P. M. Regeneration of sialic acid on the surface of Chinese hamster cells in culture. I. General characteristics of the replacement process. J Cell Physiol. 1966 Aug;68(1):85–90. doi: 10.1002/jcp.1040680112. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Martin S. S., Bosmann H. B. Mitochondrial autonomy. Studies on the mitochondrial glycoprotein: glucosyl and mitochondrial glycoprotein: mannosyl transferase enzyme systems of rat liver mitochondria utilizing endogenous acceptors. Biochim Biophys Acta. 1971 Feb 23;230(2):411–422. doi: 10.1016/0304-4165(71)90228-5. [DOI] [PubMed] [Google Scholar]
- SEAMAN G. V., UHLENBRUCK G. The surface structure of erythrocytes from some animal sources. Arch Biochem Biophys. 1963 Mar;100:493–502. doi: 10.1016/0003-9861(63)90117-6. [DOI] [PubMed] [Google Scholar]
- Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sottocasa G. L., Sandri G., Panfili E., De Bernard B. A glycoprotein located in the intermembrane space of rat liver mitochondria. FEBS Lett. 1971 Sep 15;17(1):100–105. doi: 10.1016/0014-5793(71)80574-4. [DOI] [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
- de Bernard B., Pugliarello M. C., Sandri G., Sottocasa G. L., Vittur F. Glycoprotein components, sialic acid and hexosamines, bound to inner and outer mitochondrial membranes. FEBS Lett. 1971 Jan 12;12(3):125–128. doi: 10.1016/0014-5793(71)80049-2. [DOI] [PubMed] [Google Scholar]