Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Oct 1;55(1):186–204. doi: 10.1083/jcb.55.1.186

THE INTERACTION OF SOLUBLE HORSERADISH PEROXIDASE WITH MOUSE PERITONEAL MACROPHAGES IN VITRO

Ralph M Steinman 1, Zanvil A Cohn 1
PMCID: PMC2108752  PMID: 4347251

Abstract

The in vitro interaction of soluble horseradish peroxidase (HRP) with homogeneous mono layers of mouse macrophages has been studied using sensitive biochemical and cytochemical techniques. The compartmentalization of HRP in extracellular and intracellular sites has been quantitatively evaluated. A significant fraction is bound to a serum-derived layer, which coats the surface of culture vessels and may be removed by appropriate washes. Macrophages interiorize HRP as a solute in pinocytic vesicles without appreciable binding of the glycoprotein to the plasma membrane. Uptake is directly proportional to the concentration of HRP in the culture medium. 1 x 106 cells ingest 0.0025% of the administered load per hr over a wide range of concentrations. Cytochemically, all demonstrable HRP is sequestered within the endocytic vesicles and secondary lysosomes of the vacuolar apparatus. After uptake, the enzymatic activity of HRP is inactivated exponentially with a half-life of 7–9 hr, until enzyme is no longer detectable. When macrophages have pinocytosed trace-labeled HRP-125I, cell-associated isotope disappears with a t ½ of 20–30 hr and they release monoiodotyrosine-125I into the culture medium. We were unable to obtain evidence that significant amounts of HRP (>2%) can be exocytosed after uptake, can exist intact on the cell surface, or can be digested extracellularly. It is difficult to reconcile these observations with several of the postulated mechanisms whereby macrophages are thought to play a prominent role in the induction of an immune response.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASKONAS B. A., RHODES J. M. IMMUNOGENICITY OF ANTIGEN-CONTAINING RIBONUCLEIC ACID PREPARATIONS FROM MACROPHAGES. Nature. 1965 Jan 30;205:470–474. doi: 10.1038/205470a0. [DOI] [PubMed] [Google Scholar]
  2. Byrt P., Ada G. L. An in vitro reaction between labelled flagellin or haemocyanin and lymphocyte-like cells from normal animals. Immunology. 1969 Oct;17(4):503–516. [PMC free article] [PubMed] [Google Scholar]
  3. COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COHN Z. A., BENSON B. THE IN VITRO DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. II. THE INFLUENCE OF SERUM ON GRANULE FORMATION, HYDROLASE PRODUCTION, AND PINOCYTOSIS. J Exp Med. 1965 May 1;121:835–848. doi: 10.1084/jem.121.5.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohn Z. A., Fedorko M. E., Hirsch J. G. The in vitro differentiation of mononuclear phagocytes. V. The formation of macrophage lysosomes. J Exp Med. 1966 Apr 1;123(4):757–766. doi: 10.1084/jem.123.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohn Z. A., Parks E. The regulation of pinocytosis in mouse macrophages. II. Factors inducing vesicle formation. J Exp Med. 1967 Feb 1;125(2):213–232. doi: 10.1084/jem.125.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohn Z. A. The regulation of pinocytosis in mouse macrophages. I. Metabolic requirements as defined by the use of inhibitors. J Exp Med. 1966 Oct 1;124(4):557–571. doi: 10.1084/jem.124.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cotran R. S., Litt M. Ultrastructural localization of horseradish peroxidase and endogenous peroxidase activity in guinea pig peritoneal macrophages. J Immunol. 1970 Dec;105(6):1536–1546. [PubMed] [Google Scholar]
  9. Cruchaud A., Unanue E. R. Fate and immunogenicity of antigens endocytosed by macrophages: a study using foreign red cells and immunoglobulin G. J Immunol. 1971 Nov;107(5):1329–1340. [PubMed] [Google Scholar]
  10. Ehrenreich B. A., Cohn Z. A. The fate of peptides pinocytosed by macrophages in vitro. J Exp Med. 1969 Jan 1;129(1):227–245. doi: 10.1084/jem.129.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FISHMAN M., ADLER F. L. Antibody formation initiated in vitro. II. Antibody synthesis in x-irradiated recipients of diffusion chambers containing nucleic acid derived from macrophages incubated with antigen. J Exp Med. 1963 Apr 1;117:595–602. doi: 10.1084/jem.117.4.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  13. Hanifin J. M., Cline M. J. Human monocytes and macrophages. Interaction with antigen and lymphocytes. J Cell Biol. 1970 Jul;46(1):97–105. doi: 10.1083/jcb.46.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. JERMYN M. A., THOMAS R. Multiple components in horse-radish peroxidase. Biochem J. 1954 Apr;56(4):631–639. doi: 10.1042/bj0560631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KEILIN D., HARTREE E. F. Purification of horse-radish peroxidase and comparison of its properties with those of catalase and methaemoglobin. Biochem J. 1951 Jun;49(1):88–104. doi: 10.1042/bj0490088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kornfeld R., Kornfeld S. The structure of a phytohemagglutinin receptor site from human erythrocytes. J Biol Chem. 1970 May 25;245(10):2536–2545. [PubMed] [Google Scholar]
  17. Kölsch E., Mitchison N. A. The subcellular distribution of antigen in macrophages. J Exp Med. 1968 Nov 1;128(5):1059–1079. doi: 10.1084/jem.128.5.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. MAEHLY A. C., CHANCE B. The assay of catalases and peroxidases. Methods Biochem Anal. 1954;1:357–424. doi: 10.1002/9780470110171.ch14. [DOI] [PubMed] [Google Scholar]
  20. MAEIR D. M. A technique for the study of protein uptake by cells in tissue culture. Exp Cell Res. 1961 Feb;23:200–203. doi: 10.1016/0014-4827(61)90077-5. [DOI] [PubMed] [Google Scholar]
  21. Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nadler S., Goldfischer S. The intracellular release of lysosomal contents in macrophages that have ingested silica. J Histochem Cytochem. 1970 May;18(5):368–371. doi: 10.1177/18.5.368. [DOI] [PubMed] [Google Scholar]
  23. Novikoff A. B., Goldfischer S. Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J Histochem Cytochem. 1969 Oct;17(10):675–680. doi: 10.1177/17.10.675. [DOI] [PubMed] [Google Scholar]
  24. Ouellette R. P., Balcius J. F. A thin-layer system for the separation of iodine-containing compounds using binary mixtures of adsorbents. J Chromatogr. 1966 Oct;24(2):465–468. doi: 10.1016/s0021-9673(01)98196-8. [DOI] [PubMed] [Google Scholar]
  25. PERKINS E. H., MAKINODAN T. THE SUPPRESSIVE ROLE OF MOUSE PERITONEAL PHAGOCYTES IN AGGLUTININ RESPONSE. J Immunol. 1965 May;94:765–777. [PubMed] [Google Scholar]
  26. Pearson M. N., Raffel S. Macrophage-digested antigen as inducer of delayed hypersensitivity. J Exp Med. 1971 Mar 1;133(3):494–505. doi: 10.1084/jem.133.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rhodes J. M., Lind I., Birch-Andersen A., Ravn H. The intracellular localization of two antigens after uptake in vivo by peritoneal macrophages from normal mice. Immunology. 1969 Sep;17(3):445–456. [PMC free article] [PubMed] [Google Scholar]
  28. Roelants G. E., Goodman J. W., McDevitt H. O. Binding of a polypeptide antigen to ribonucleic acid from macrophage, HeLa and Escherichia coli cells. J Immunol. 1971 May;106(5):1222–1226. [PubMed] [Google Scholar]
  29. Roelants G. E., Goodman J. W. The chemical nature of macrophage RNA-antigen complexes and their relevance to immune induction. J Exp Med. 1969 Sep 1;130(3):557–574. doi: 10.1084/jem.130.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SCHUMAKER V. N. Uptake of protein from solution by Amoeba proteus. Exp Cell Res. 1958 Oct;15(2):314–331. doi: 10.1016/0014-4827(58)90033-8. [DOI] [PubMed] [Google Scholar]
  31. Schmidtke J. R., Unanue E. R. Macrophage-antigen interaction: uptake, metabolism and immunogenicity of foreign albumin. J Immunol. 1971 Aug;107(2):331–338. [PubMed] [Google Scholar]
  32. Schulman J. D., Bradley K. H. The metabolism of amino acids, peptides, and disulfides in lysosomes of fibroblasts cultured from normal individuals and those with cystinosis. J Exp Med. 1970 Dec 1;132(6):1090–1104. doi: 10.1084/jem.132.6.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shortman K., Palmer J. The requirement for macrophages in the in vitro immune response. Cell Immunol. 1971 Oct;2(5):399–410. doi: 10.1016/0008-8749(71)90051-7. [DOI] [PubMed] [Google Scholar]
  34. Straus W. Comparative analysis of the concentration of injected horseradish peroxidase in cytoplasmic granules of the kidney cortex, in the blood, urine, and liver. J Cell Biol. 1971 Mar;48(3):620–632. doi: 10.1083/jcb.48.3.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Unanue E. R., Askonas B. A. Persistence of immunogenicity of antigen after uptake by macrophages. J Exp Med. 1968 May 1;127(5):915–926. doi: 10.1084/jem.127.5.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Unanue E. R., Askonas B. A. The immune response of mice to antigen in macrophages. Immunology. 1968 Aug;15(2):287–296. [PMC free article] [PubMed] [Google Scholar]
  37. Unanue E. R., Cerottini J. C. The function of macrophages in the immune response. Semin Hematol. 1970 Apr;7(2):225–248. [PubMed] [Google Scholar]
  38. Werb Z., Cohn Z. A. Cholesterol metabolism in the macrophage. II. Alteration of subcellular exchangeable cholesterol compartments and exchange in other cell types. J Exp Med. 1971 Dec 1;134(6):1570–1590. doi: 10.1084/jem.134.6.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Willingham M. C., Spicer S. S., Graber C. D. Immunocytologic labeling of calf and human lymphocyte surface antigens. Lab Invest. 1971 Sep;25(3):211–219. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES