Abstract
Previous studies have shown that cells in the 6-day old embryonic chick lens epithelium elongate in tissue culture. In the present study, the time course of elongation during the 1st day of cultivation has been examined histologically. Cultured epithelia were also treated with cycloheximide or colchicine in order to determine if cell elongation depends on new protein synthesis and on the utilization of microtubules, respectively. In the first 5 hr of culture, the mean cell length increased from 11 µ to 21 µ. Subsequently, elongation was slower; the mean cell length was 28 µ after 24 hr in culture. Continuous exposure to cycloheximide did not inhibit the initial doubling of cell length, but did prevent further elongation. By contrast, colchicine inhibited elongation almost immediately. When added after the cell length had doubled, cycloheximide and colchicine each inhibited further elongation; the treated cells remained columnar. Radioautographic and electrophoretic tests showed that protein synthesis was not appreciably affected by colchicine, but was suppressed by cycloheximide. Electron microscopic examination revealed that microtubules oriented along surface membranes were present in epithelia cultured with serum alone and with cycloheximide, but not in those incubated with colchicine. These results indicate that the early stages of cell elongation in the cultured lens epithelium require an initial assembly and organization of preexisting microtubular elements and that continued elongation depends, in addition, on the de novo synthesis of protein, possibly microtubule protein.
Full Text
The Full Text of this article is available as a PDF (979.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold J. M. On the occurrence of microtubules in the developing lens of the squid Loligo pealii. J Ultrastruct Res. 1966 Mar;14(5):534–539. doi: 10.1016/s0022-5320(66)80080-1. [DOI] [PubMed] [Google Scholar]
- Auclair W., Siegel B. W. Cilia regeneration in the sea urchin embryo: evidence for a pool of ciliary proteins. Science. 1966 Nov 18;154(3751):913–915. doi: 10.1126/science.154.3751.913. [DOI] [PubMed] [Google Scholar]
- BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borisy G. G., Taylor E. W. The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J Cell Biol. 1967 Aug;34(2):525–533. doi: 10.1083/jcb.34.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borisy G. G., Taylor E. W. The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J Cell Biol. 1967 Aug;34(2):535–548. doi: 10.1083/jcb.34.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnside B. Microtubules and microfilaments in newt neuralation. Dev Biol. 1971 Nov;26(3):416–441. doi: 10.1016/0012-1606(71)90073-x. [DOI] [PubMed] [Google Scholar]
- ENNIS H. L., LUBIN M. CYCLOHEXIMIDE: ASPECTS OF INHIBITION OF PROTEIN SYNTHESIS IN MAMMALIAN CELLS. Science. 1964 Dec 11;146(3650):1474–1476. doi: 10.1126/science.146.3650.1474. [DOI] [PubMed] [Google Scholar]
- Fischman D. A. An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J Cell Biol. 1967 Mar;32(3):557–575. doi: 10.1083/jcb.32.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAM R. G. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp Cell Res. 1963 Feb;29:515–526. doi: 10.1016/s0014-4827(63)80014-2. [DOI] [PubMed] [Google Scholar]
- Handel M. A., Roth L. E. Cell shape and morphology of the neural tube: implications for microtubule function. Dev Biol. 1971 May;25(1):78–95. doi: 10.1016/0012-1606(71)90020-0. [DOI] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Karfunkel P. The role of microtubules and microfilaments in neurulation in Xenopus. Dev Biol. 1971 May;25(1):30–56. doi: 10.1016/0012-1606(71)90018-2. [DOI] [PubMed] [Google Scholar]
- Kuwabara T. Microtubules in the lens. Arch Ophthalmol. 1968 Feb;79(2):189–195. doi: 10.1001/archopht.1968.03850040191017. [DOI] [PubMed] [Google Scholar]
- McDevitt D. S., Meza I., Yamada T. Immunofluorescence localization of the crystallins in amphibial lens development, with special reference to the gamma-crystallins. Dev Biol. 1969 Jun;19(6):581–607. doi: 10.1016/0012-1606(69)90039-6. [DOI] [PubMed] [Google Scholar]
- Modak S. P., Morris G., Yamada T. DNA synthesis and mitotic activity during early development of chick lens. Dev Biol. 1968 May;17(5):544–561. doi: 10.1016/0012-1606(68)90004-3. [DOI] [PubMed] [Google Scholar]
- Overton J. Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kühniella. J Cell Biol. 1966 May;29(2):293–305. doi: 10.1083/jcb.29.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PHILPOTT G. W., COULOMBRE A. J. LENS DEVELOPMENT. II. THE DIFFERENTIATION OF EMBRYONIC CHICK LENS EPITHELIAL CELLS IN VITRO AND IN VIVO. Exp Cell Res. 1965 Jun;38:635–644. doi: 10.1016/0014-4827(65)90387-3. [DOI] [PubMed] [Google Scholar]
- PUCK T. T., CIECIURA S. J., ROBINSON A. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med. 1958 Dec 1;108(6):945–956. doi: 10.1084/jem.108.6.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce T. L., Zwaan J. A light and electron microscopic study of cell behavior and microtubules in the embryonic chicken lens using Colcemid. J Embryol Exp Morphol. 1970 Apr;23(2):491–507. [PubMed] [Google Scholar]
- Perry M. M., Waddington C. H. Ultrastructure of the blastopore cells in the newt. J Embryol Exp Morphol. 1966 Jun;15(3):317–330. [PubMed] [Google Scholar]
- Persons B. J., Modak S. P. The pattern of DNA synthesis in the lens epithelium and the annular pad during development and growth of the chick lens. Exp Eye Res. 1970 Jan;9(1):144–151. doi: 10.1016/s0014-4835(70)80069-0. [DOI] [PubMed] [Google Scholar]
- Philpott G. W. Growth and cytodifferentiation of embryonic chick lens epithelial cells in vitro. Exp Cell Res. 1970 Jan;59(1):57–68. doi: 10.1016/0014-4827(70)90623-3. [DOI] [PubMed] [Google Scholar]
- Piatigorsky J., Rothschild S. S. Loss during development of the ability of chick embryonic lens cells to elongate in culture: inverse relationship between cell division and elongation. Dev Biol. 1972 Jun;28(2):382–389. doi: 10.1016/0012-1606(72)90021-8. [DOI] [PubMed] [Google Scholar]
- Piatigorsky J., Webster H. D., Craig S. P. Protein synthesis and ultrastructure during the formation of embryonic chick lens fibers in vivo and in vitro. Dev Biol. 1972 Feb;27(2):176–189. doi: 10.1016/0012-1606(72)90096-6. [DOI] [PubMed] [Google Scholar]
- Porte A., Stoeckel M. E., Brini A. Formation de l'ébauche oculaire et différenciation du cristallin chez l'embryon de poulet. Etude au microscope électronique. Arch Ophtalmol Rev Gen Ophtalmol. 1968 Oct-Nov;28(7):681–706. [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. HISTOCHEMICAL AND ULTRASTRUCTURAL STUDIES ON HELA CELL CULTURES EXPOSED TO SPINDLE INHIBITORS WITH SPECIAL REFERENCE TO THE INTERPHASE CELL. J Histochem Cytochem. 1964 Sep;12:704–711. doi: 10.1177/12.9.704. [DOI] [PubMed] [Google Scholar]
- Rosenbaum J. L., Carlson K. Cilia regeneration in Tetrahymena and its inhibition by colchicine. J Cell Biol. 1969 Feb;40(2):415–425. doi: 10.1083/jcb.40.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbaum J. L., Moulder J. E., Ringo D. L. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol. 1969 May;41(2):600–619. doi: 10.1083/jcb.41.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder T. E. Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J Embryol Exp Morphol. 1970 Apr;23(2):427–462. [PubMed] [Google Scholar]
- Schubert D., Humphreys S., Jacob F., de Vitry F. Induced differentiation of a neuroblastoma. Dev Biol. 1971 Aug;25(4):514–546. doi: 10.1016/0012-1606(71)90004-2. [DOI] [PubMed] [Google Scholar]
- Seeds N. W., Gilman A. G., Amano T., Nirenberg M. W. Regulation of axon formation by clonal lines of a neural tumor. Proc Natl Acad Sci U S A. 1970 May;66(1):160–167. doi: 10.1073/pnas.66.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAKATA C., ALBRIGHT J. F., YAMADA T. LENS FIBER DIFFERENTIATION AND GAMMA CRYSTALLINS: IMMUNOFLUORESCENT STUDY OF WOLFFIAN REGENERATION. Science. 1965 Mar 12;147(3663):1299–1301. doi: 10.1126/science.147.3663.1299. [DOI] [PubMed] [Google Scholar]
- Tamura S. Synthesis and assembly of microtubule proteins in Tetrahymena pyriformis. Exp Cell Res. 1971 Sep;68(1):180–185. doi: 10.1016/0014-4827(71)90601-x. [DOI] [PubMed] [Google Scholar]
- Tilney L. G., Gibbins J. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J Cell Biol. 1969 Apr;41(1):227–250. doi: 10.1083/jcb.41.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisenberg R. C., Borisy G. G., Taylor E. W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry. 1968 Dec;7(12):4466–4479. doi: 10.1021/bi00852a043. [DOI] [PubMed] [Google Scholar]
- Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
- Wisniewski H., Shelanski M. L., Terry R. D. Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J Cell Biol. 1968 Jul;38(1):224–229. doi: 10.1083/jcb.38.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K. M., Spooner B. S., Wessells N. K. Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1206–1212. doi: 10.1073/pnas.66.4.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K. M., Wessells N. K. Axon elongation. Effect of nerve growth factor on microtubule protein. Exp Cell Res. 1971 Jun;66(2):346–352. doi: 10.1016/0014-4827(71)90687-2. [DOI] [PubMed] [Google Scholar]
- Zwaan J., Bryan P. R., Jr, Pearce T. L. Interkinetic nuclear migration during the early stages of lens formation in the chicken embryo. J Embryol Exp Morphol. 1969 Feb;21(1):71–83. [PubMed] [Google Scholar]
- Zwaan J., Pearce T. L. Cell population kinetics in the chicken lens primordium during and shortly after its contact wth the optic cup. Dev Biol. 1971 May;25(1):96–118. doi: 10.1016/0012-1606(71)90021-2. [DOI] [PubMed] [Google Scholar]