Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Oct 1;55(1):58–73. doi: 10.1083/jcb.55.1.58

CALCIUM BINDING TO INTESTINAL MEMBRANES

James L Oschman 1, Betty J Wall 1
PMCID: PMC2108755  PMID: 4569411

Abstract

Flame photometry reveals that glutaraldehyde and buffer solutions in routine use for electron microscopy contain varying amounts of calcium. The presence of electron-opaque deposits adjacent to membranes in a variety of tissues can be correlated with the presence of calcium in the fixative. In insect intestine (midgut), deposits occur adjacent to apical and lateral plasma membranes. The deposits are particularly evident in tissues fixed in glutaraldehyde without postosmication. They are also observed in osmicated tissue if calcium is added to wash and osmium solutions. Deposits are absent when calcium-free fixatives are used, but are present when traces of CaCl2 (as low as 5 x 10-5 M) are added. The deposits occur at regular intervals along junctional membranes, providing images strikingly similar to those obtained by other workers who have used pyroantimonate in an effort to localize sodium. Other divalent cations (Mg++, Sr++, Ba++, Mn++, Fe++) appear to substitute for calcium, while sodium, potassium, lanthanum, and mercury do not. After postfixing with osmium with calcium added, the deposits can be resolved as patches along the inner leaflet of apical and lateral plasma membranes. The dense regions may thus localize membrane constituents that bind calcium. The results are discussed in relation to the role of calcium in control of cell-to-cell communication, intestinal calcium uptake, and the pyroantimonate technique for ion localization.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E., Harvey W. R. Active transport by the cecropia midgut. II. Fine structure of the midgut epithelium. J Cell Biol. 1966 Oct;31(1):107–134. doi: 10.1083/jcb.31.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bulger R. E. Use of potassium pyroantimonate in the localization of sodium ions in rat kidney tissue. J Cell Biol. 1969 Jan;40(1):79–94. doi: 10.1083/jcb.40.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bullivant S., Loewenstein W. R. Structure of coupled and uncoupled cell junctions. J Cell Biol. 1968 Jun;37(3):621–632. doi: 10.1083/jcb.37.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilula N. B., Branton D., Satir P. The septate junction: a structural basis for intercellular coupling. Proc Natl Acad Sci U S A. 1970 Sep;67(1):213–220. doi: 10.1073/pnas.67.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilula N. B., Satir P. Septate and gap junctions in molluscan gill epithelium. J Cell Biol. 1971 Dec;51(3):869–872. doi: 10.1083/jcb.51.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gouranton J. Elaboration d'une mucoprotéine acide dans l'appareil de Golgi des cellules d'une portion de l'intestin moyen de divers Cercopidae. C R Acad Sci Hebd Seances Acad Sci D. 1967 May 29;264(22):2584–2587. [PubMed] [Google Scholar]
  7. Hudspeth A. J., Revel J. P. Coexistence of gap and sseptate junctions in an invertebrate epithelium. J Cell Biol. 1971 Jul;50(1):92–101. doi: 10.1083/jcb.50.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaye G. I., Cole J. D., Donn A. Electron microscopy: sodium localization in normal and ouabain-treated transporting cells. Science. 1965 Nov 26;150(3700):1167–1168. doi: 10.1126/science.150.3700.1167. [DOI] [PubMed] [Google Scholar]
  9. Schaefer C. W., Vanderberg J. P., Rhodin J. The fine structure of mosquito midgut muscle. J Cell Biol. 1967 Sep;34(3):905–911. doi: 10.1083/jcb.34.3.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Smith D. S., Gupta B. L., Smith U. The organization and myofilament array of insect visceral muscles. J Cell Sci. 1966 Mar;1(1):49–57. doi: 10.1242/jcs.1.1.49. [DOI] [PubMed] [Google Scholar]
  11. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  12. Taylor A. N., Wasserman R. H. Correlations between the vitamin D-induced calcium binding protein and intestinal absorption of calcium. Fed Proc. 1969 Nov-Dec;28(6):1834–1838. [PubMed] [Google Scholar]
  13. Wasserman R. H., Taylor A. N. Vitamin D-dependent calcium-binding protein. Response to some physiological and nutritional variables. J Biol Chem. 1968 Jul 25;243(14):3987–3993. [PubMed] [Google Scholar]
  14. Wasserman R. H., Taylor A. N. Vitamin d3-induced calcium-binding protein in chick intestinal mucosa. Science. 1966 May 6;152(3723):791–793. doi: 10.1126/science.152.3723.791. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES