Abstract
Limulus paramyosin and myosin were localized in the A bands of glycerinated Limulus striated muscle by the indirect horseradish peroxidase-labeled antibody and direct and indirect fluorescent antibody techniques. Localization of each protein in the A band varied with sarcomere length. Antiparamyosin was bound at the lateral margins of the A bands in long (∼ 10.0 µ) and intermediate (∼ 7.0 µ) length sarcomeres, and also in a thin line in the central A bands of sarcomeres, 7.0–∼6.0 µ. Antiparamyosin stained the entire A bands of short sarcomeres (<6.0). Conversely, antimyosin stained the entire A bands of long sarcomeres, showed decreased intensity of central A band staining except for a thin medial line in intermediate length sarcomeres, and was bound only in the lateral A bands of short sarcomeres. These results are consistent with a model in which paramyosin comprises the core of the thick filament and myosin forms a cortex. Differential staining observed using antiparamyosin and antimyosin at various sarcomere lengths and changes in A band lengths reflect the extent of thick-thin filament interaction and conformational change in the thick filament during sarcomeric shortening.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEAR R. S., SELBY C. C. The structure of paramyosin fibrils according to x-ray diffraction. J Biophys Biochem Cytol. 1956 Jan 25;2(1):55–69. doi: 10.1083/jcb.2.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COONS A. H., LEDUC E. H., CONNOLLY J. M. Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med. 1955 Jul 1;102(1):49–60. doi: 10.1084/jem.102.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen C., Szent-Györgyi A. G., Kendrick-Jones J. Paramyosin and the filaments of molluscan "catch" muscles. I. Paramyosin: structure and assembly. J Mol Biol. 1971 Mar 14;56(2):223–227. doi: 10.1016/0022-2836(71)90461-x. [DOI] [PubMed] [Google Scholar]
- DE VILLAFRANCA G. W. The A and IB and lengths in stretched or contracted horseshoe crab skeletal muscle. J Ultrastruct Res. 1961 Apr;5:109–115. doi: 10.1016/s0022-5320(61)90008-9. [DOI] [PubMed] [Google Scholar]
- De Villafranca G. W., Campbell L. K. Magnesium activation of natural actomyosin ATPase from horseshoe crab. Comp Biochem Physiol. 1969 May;29(2):775–783. doi: 10.1016/0010-406x(69)91628-4. [DOI] [PubMed] [Google Scholar]
- De Villafranca G. W. Some physico-chemical properties of myosin B from the horseshoe crab, Limulus polyphemus. Comp Biochem Physiol. 1968 Aug;26(2):443–454. doi: 10.1016/0010-406x(68)90637-3. [DOI] [PubMed] [Google Scholar]
- ELLIOTT G. F. ELECTRON MICROSCOPE STUDIES OF THE STRUCTURE OF THE FILAMENTS IN THE OPAQUE ADDUCTOR MUSCLE OF THE OYSTER CRASSOSTREA ANGULATA. J Mol Biol. 1964 Oct;10:89–104. doi: 10.1016/s0022-2836(64)80030-9. [DOI] [PubMed] [Google Scholar]
- ELLIOTT G. F., HANSON J., LOWY J. Paramyosin elements in lamellibranch muscles. Nature. 1957 Dec 7;180(4597):1291–1292. doi: 10.1038/1801291a0. [DOI] [PubMed] [Google Scholar]
- ELLIOTT G. F., LOWY J. Low-angle x-ray reflections from living molluscan muscles. J Mol Biol. 1961 Feb;3:41–46. doi: 10.1016/s0022-2836(61)80006-5. [DOI] [PubMed] [Google Scholar]
- Elliott A., Lowy J. A model for the coarse structure of paramyosin filaments. J Mol Biol. 1970 Oct 28;53(2):181–203. doi: 10.1016/0022-2836(70)90294-9. [DOI] [PubMed] [Google Scholar]
- Franzini-Armstrong C. Natural variability in the length of thin and thick filaments in single fibres from a crab, Portunus depurator. J Cell Sci. 1970 Mar;6(2):559–592. doi: 10.1242/jcs.6.2.559. [DOI] [PubMed] [Google Scholar]
- Hagopian M. The myofilament arrangement in the femoral muscle of the cockroach, Leucophaea maderae fabricius. J Cell Biol. 1966 Mar;28(3):545–562. doi: 10.1083/jcb.28.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardwicke P. M., Hanson J. Separation of thick and thin myofilaments. J Mol Biol. 1971 Aug 14;59(3):509–516. doi: 10.1016/0022-2836(71)90314-7. [DOI] [PubMed] [Google Scholar]
- JOHNSON W. H. Tonic mechanisms in smooth muscles. Physiol Rev Suppl. 1962 Jul;5:113–159. [PubMed] [Google Scholar]
- Kendrick-Jones J., Cohen C., Szent-Györgyi A. G., Longley W. Paramyosin: molecular length and assembly. Science. 1969 Mar 14;163(3872):1196–1198. doi: 10.1126/science.163.3872.1196. [DOI] [PubMed] [Google Scholar]
- Kundrat E., Pepe F. A. The M band. Studies with fluorescent antibody staining. J Cell Biol. 1971 Feb;48(2):340–347. doi: 10.1083/jcb.48.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWY J., MILLMAN B. M., HANSON J. STRUCTURE AND FUNCTION IN SMOOTH TONIC MUSCLES OF LAMELLIBRANCH MOLLUSCS. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:525–536. doi: 10.1098/rspb.1964.0068. [DOI] [PubMed] [Google Scholar]
- Leyton R. A., Sonnenblick E. H. Cardiac muscle of the horseshoe crab, Limulus polyphemus. I. Ultrastructure. J Cell Biol. 1971 Jan;48(1):101–119. doi: 10.1083/jcb.48.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakane P. K., Pierce G. B., Jr Enzyme-labeled antibodies for the light and electron microscopic localization of tissue antigens. J Cell Biol. 1967 May;33(2):307–318. doi: 10.1083/jcb.33.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pepe F. A. Some aspects of the structural organization of the myofibril as revealed by antibody--staining methods. J Cell Biol. 1966 Mar;28(3):505–525. doi: 10.1083/jcb.28.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pepe F. A. The myosin filament. I. Structural organization from antibody staining observed in electron microscopy. J Mol Biol. 1967 Jul 28;27(2):203–225. doi: 10.1016/0022-2836(67)90016-2. [DOI] [PubMed] [Google Scholar]
- Pepe F. A. The myosin filament. II. Interaction between myosin and actin filaments observed using antibody staining in fluorescent and electron microscopy. J Mol Biol. 1967 Jul 28;27(2):227–236. doi: 10.1016/0022-2836(67)90017-4. [DOI] [PubMed] [Google Scholar]
- RIGGS J. L., SEIWALD R. J., BURCKHALTER J. H., DOWNS C. M., METCALF T. G. Isothiocyanate compounds as fluorescent labeling agents for immune serum. Am J Pathol. 1958 Nov-Dec;34(6):1081–1097. [PMC free article] [PubMed] [Google Scholar]
- Rüegg J. C. Smooth muscle tone. Physiol Rev. 1971 Jan;51(1):201–248. doi: 10.1152/physrev.1971.51.1.201. [DOI] [PubMed] [Google Scholar]
- SCHMITT F. O., BEAR R. S. Electron microscope and X-ray diffraction studies of muscle structure. Ann N Y Acad Sci. 1947 May 30;47(ART):799–812. doi: 10.1111/j.1749-6632.1947.tb31737.x. [DOI] [PubMed] [Google Scholar]
- Szent-Györgyi A. G., Cohen C., Kendrick-Jones J. Paramyosin and the filaments of molluscan "catch" muscles. II. Native filaments: isolation and characterization. J Mol Biol. 1971 Mar 14;56(2):239–258. doi: 10.1016/0022-2836(71)90462-1. [DOI] [PubMed] [Google Scholar]
- Twarog B. M. The regulation of catch in molluscan muscle. J Gen Physiol. 1967 Jul;50(6 Suppl):157–169. doi: 10.1085/jgp.50.6.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEBER A. The ultracentrifugal separation of L-myosin and actin in an actomyosin sol under the influence of ATP. Biochim Biophys Acta. 1956 Feb;19(2):345–351. doi: 10.1016/0006-3002(56)90439-5. [DOI] [PubMed] [Google Scholar]
- WELLER T. H., COONS A. H. Fluorescent antibody studies with agents of varicella and herpes zoster propagated in vitro. Proc Soc Exp Biol Med. 1954 Aug-Sep;86(4):789–794. doi: 10.3181/00379727-86-21235. [DOI] [PubMed] [Google Scholar]