Abstract
Direct demonstration of the cellular location of sodium pumping constitutes a key problem in the solution of intestinal sodium absorption. Utilizing silicone-impregnated epoxy sections of freeze-dried, osmium-fixed tissue, ouabain-3H and inulin-3H light microscope radioautographs have been produced which show that: lateral but not brush border membranes of rabbit small intestine bind ouabain-3H (high specific activity) with an affinity so great that a subsequent washing in ouabain-free medium has little effect on binding; lateral membrane binding is not apparent with low specific activity ouabain-3H, and inulin-3H and ouabain-3H (low specific activity) in the cores of the villi do not equilibrate with the intercellular spaces. Preliminary tracer measurements of ouabain-3H and inulin-14C spaces also agree with these findings As ouabain is a specific inhibitor of active sodium transport, these observations provide direct support for the view that lateral membrane pumping of sodium into the intercellular spaces causes, through osmotic forces on water, a flow of fluid out of these spaces into the interstitium.
Full Text
The Full Text of this article is available as a PDF (920.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Willis J. S. On the number of sodium pumping sites in cell membranes. Biochim Biophys Acta. 1969;183(3):646–649. doi: 10.1016/0005-2736(69)90180-1. [DOI] [PubMed] [Google Scholar]
- Berg G. G., Chapman B. The sodium and potassium activated ATPase of intestinal epithelium. I. Location of enzymatic activity in the cell. J Cell Physiol. 1965 Jun;65(3):361–372. doi: 10.1002/jcp.1030650309. [DOI] [PubMed] [Google Scholar]
- CRANE R. K., MANDELSTAM P. The active transport of sugars by various preparations of hamster intestine. Biochim Biophys Acta. 1960 Dec 18;45:460–476. doi: 10.1016/0006-3002(60)91482-7. [DOI] [PubMed] [Google Scholar]
- Csáky T. Z., Hara Y. Inhibition of active intestinal sugar transport by digitalis. Am J Physiol. 1965 Sep;209(3):467–472. doi: 10.1152/ajplegacy.1965.209.3.467. [DOI] [PubMed] [Google Scholar]
- Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellory J. C., Keynes R. D. Binding of tritiated digoxin to human red cell ghosts. Nature. 1969 Feb 22;221(5182):776–776. doi: 10.1038/221776a0. [DOI] [PubMed] [Google Scholar]
- GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
- Gilles-Baillien M., Schoffeniels E. Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim. 1965 Mar;73(2):355–357. doi: 10.3109/13813456509084257. [DOI] [PubMed] [Google Scholar]
- Kaye G. I., Wheeler H. O., Whitlock R. T., Lane N. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscopic study. J Cell Biol. 1966 Aug;30(2):237–268. doi: 10.1083/jcb.30.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marzo A., Merlo L., Noseda V., Marchetti G. V. A linear correlation between the amount of 3H-ouabain administered orally and that absorbed by the gastrointestinal tract in guinea pigs. Experientia. 1970 Dec 15;26(12):1338–1339. doi: 10.1007/BF02113016. [DOI] [PubMed] [Google Scholar]
- McHARDY G. J., PARSONS D. S. The absorption of water and salt from the small intestine of the rat. Q J Exp Physiol Cogn Med Sci. 1957 Jan;42(1):33–48. doi: 10.1113/expphysiol.1957.sp001241. [DOI] [PubMed] [Google Scholar]
- Overton J., Eichholz A., Crane R. K. STUDIES ON THE ORGANIZATION OF THE BRUSH BORDER IN INTESTINAL EPITHELIAL CELLS : II. Fine Structure of Fractions of Tris-Disrupted Hamster Brush Borders. J Cell Biol. 1965 Sep 1;26(3):693–706. doi: 10.1083/jcb.26.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quigley J. P., Gotterer G. S. Distribution of (Na+-K+)-stimulated ATPase activity in rat intestinal mucosa. Biochim Biophys Acta. 1969 Apr;173(3):456–468. doi: 10.1016/0005-2736(69)90010-8. [DOI] [PubMed] [Google Scholar]
- Rose R. C., Schultz S. G. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol. 1971 Jun;57(6):639–663. doi: 10.1085/jgp.57.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stirling C. E., Schneider A. J., Wong M. D., Kinter W. B. Quantitative radioautography of sugar transport in intestinal biopsies from normal humans and a patient with glucose-galactose malabsorption. J Clin Invest. 1972 Feb;51(2):438–451. doi: 10.1172/JCI106830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAYLOR C. B. Cation-stimulation of an ATPase system from the intestinal mucosa of the guinea-pig. Biochim Biophys Acta. 1962 Jul 2;60:437–440. doi: 10.1016/0006-3002(62)90429-8. [DOI] [PubMed] [Google Scholar]
- Tormey J. M., Diamond J. M. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol. 1967 Sep;50(8):2031–2060. doi: 10.1085/jgp.50.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILSON T. H., WISEMAN G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1954 Jan;123(1):116–125. doi: 10.1113/jphysiol.1954.sp005036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wall B. J., Oschman J. L., Schmidt-Nielsen B. Fluid transport: concentration of the intercellular compartment. Science. 1970 Mar 13;167(3924):1497–1499. doi: 10.1126/science.167.3924.1497. [DOI] [PubMed] [Google Scholar]
- Wright E. M. The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J Physiol. 1966 Jul;185(2):486–500. doi: 10.1113/jphysiol.1966.sp007998. [DOI] [PMC free article] [PubMed] [Google Scholar]