Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Jun 1;53(3):704–714. doi: 10.1083/jcb.53.3.704

RADIOAUTOGRAPHIC LOCALIZATION OF SODIUM PUMP SITES IN RABBIT INTESTINE

Charles E Stirling 1
PMCID: PMC2108766  PMID: 4554986

Abstract

Direct demonstration of the cellular location of sodium pumping constitutes a key problem in the solution of intestinal sodium absorption. Utilizing silicone-impregnated epoxy sections of freeze-dried, osmium-fixed tissue, ouabain-3H and inulin-3H light microscope radioautographs have been produced which show that: lateral but not brush border membranes of rabbit small intestine bind ouabain-3H (high specific activity) with an affinity so great that a subsequent washing in ouabain-free medium has little effect on binding; lateral membrane binding is not apparent with low specific activity ouabain-3H, and inulin-3H and ouabain-3H (low specific activity) in the cores of the villi do not equilibrate with the intercellular spaces. Preliminary tracer measurements of ouabain-3H and inulin-14C spaces also agree with these findings As ouabain is a specific inhibitor of active sodium transport, these observations provide direct support for the view that lateral membrane pumping of sodium into the intercellular spaces causes, through osmotic forces on water, a flow of fluid out of these spaces into the interstitium.

Full Text

The Full Text of this article is available as a PDF (920.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Willis J. S. On the number of sodium pumping sites in cell membranes. Biochim Biophys Acta. 1969;183(3):646–649. doi: 10.1016/0005-2736(69)90180-1. [DOI] [PubMed] [Google Scholar]
  2. Berg G. G., Chapman B. The sodium and potassium activated ATPase of intestinal epithelium. I. Location of enzymatic activity in the cell. J Cell Physiol. 1965 Jun;65(3):361–372. doi: 10.1002/jcp.1030650309. [DOI] [PubMed] [Google Scholar]
  3. CRANE R. K., MANDELSTAM P. The active transport of sugars by various preparations of hamster intestine. Biochim Biophys Acta. 1960 Dec 18;45:460–476. doi: 10.1016/0006-3002(60)91482-7. [DOI] [PubMed] [Google Scholar]
  4. Csáky T. Z., Hara Y. Inhibition of active intestinal sugar transport by digitalis. Am J Physiol. 1965 Sep;209(3):467–472. doi: 10.1152/ajplegacy.1965.209.3.467. [DOI] [PubMed] [Google Scholar]
  5. Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ellory J. C., Keynes R. D. Binding of tritiated digoxin to human red cell ghosts. Nature. 1969 Feb 22;221(5182):776–776. doi: 10.1038/221776a0. [DOI] [PubMed] [Google Scholar]
  7. GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
  8. Gilles-Baillien M., Schoffeniels E. Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim. 1965 Mar;73(2):355–357. doi: 10.3109/13813456509084257. [DOI] [PubMed] [Google Scholar]
  9. Kaye G. I., Wheeler H. O., Whitlock R. T., Lane N. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscopic study. J Cell Biol. 1966 Aug;30(2):237–268. doi: 10.1083/jcb.30.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marzo A., Merlo L., Noseda V., Marchetti G. V. A linear correlation between the amount of 3H-ouabain administered orally and that absorbed by the gastrointestinal tract in guinea pigs. Experientia. 1970 Dec 15;26(12):1338–1339. doi: 10.1007/BF02113016. [DOI] [PubMed] [Google Scholar]
  11. McHARDY G. J., PARSONS D. S. The absorption of water and salt from the small intestine of the rat. Q J Exp Physiol Cogn Med Sci. 1957 Jan;42(1):33–48. doi: 10.1113/expphysiol.1957.sp001241. [DOI] [PubMed] [Google Scholar]
  12. Overton J., Eichholz A., Crane R. K. STUDIES ON THE ORGANIZATION OF THE BRUSH BORDER IN INTESTINAL EPITHELIAL CELLS : II. Fine Structure of Fractions of Tris-Disrupted Hamster Brush Borders. J Cell Biol. 1965 Sep 1;26(3):693–706. doi: 10.1083/jcb.26.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Quigley J. P., Gotterer G. S. Distribution of (Na+-K+)-stimulated ATPase activity in rat intestinal mucosa. Biochim Biophys Acta. 1969 Apr;173(3):456–468. doi: 10.1016/0005-2736(69)90010-8. [DOI] [PubMed] [Google Scholar]
  14. Rose R. C., Schultz S. G. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol. 1971 Jun;57(6):639–663. doi: 10.1085/jgp.57.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stirling C. E., Schneider A. J., Wong M. D., Kinter W. B. Quantitative radioautography of sugar transport in intestinal biopsies from normal humans and a patient with glucose-galactose malabsorption. J Clin Invest. 1972 Feb;51(2):438–451. doi: 10.1172/JCI106830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. TAYLOR C. B. Cation-stimulation of an ATPase system from the intestinal mucosa of the guinea-pig. Biochim Biophys Acta. 1962 Jul 2;60:437–440. doi: 10.1016/0006-3002(62)90429-8. [DOI] [PubMed] [Google Scholar]
  19. Tormey J. M., Diamond J. M. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol. 1967 Sep;50(8):2031–2060. doi: 10.1085/jgp.50.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WILSON T. H., WISEMAN G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1954 Jan;123(1):116–125. doi: 10.1113/jphysiol.1954.sp005036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wall B. J., Oschman J. L., Schmidt-Nielsen B. Fluid transport: concentration of the intercellular compartment. Science. 1970 Mar 13;167(3924):1497–1499. doi: 10.1126/science.167.3924.1497. [DOI] [PubMed] [Google Scholar]
  22. Wright E. M. The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J Physiol. 1966 Jul;185(2):486–500. doi: 10.1113/jphysiol.1966.sp007998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES