Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Jun 1;53(3):715–736. doi: 10.1083/jcb.53.3.715

PHYSICAL STUDIES OF ISOLATED EUCARYOTIC NUCLEI

Donald E Olins 1, Ada L Olins 1
PMCID: PMC2108770  PMID: 4554987

Abstract

The degree of chromatin condensation in isolated rat liver nuclei and chicken erythrocyte nuclei was studied by phase-contrast microscopy as a function of solvent pH, K+ and Mg++ concentrations Data were represented as "phase" maps, and standard solvent conditions selected that reproducibly yield granular, slightly granular, and homogeneous nuclei Nuclei in these various states were examined by ultraviolet absorption and circular dichroism (CD) spectroscopy, low-angle X-ray diffraction, electron microscopy, and binding capacity for ethidium bromide Homogeneous nuclei exhibited absorption and CD spectra resembling those of isolated nucleohistone. Suspensions of granular nuclei showed marked turbidity and absorption flattening, and a characteristic blue-shift of a crossover wavelength in the CD spectra. In all solvent conditions studied, except pH < 2 3, low-angle X-ray reflections characteristic of the native, presumably superhelical, nucleohistone were observed from pellets of intact nuclei. Threads (100–200 A diameter) were present in the condensed and dispersed phases of nuclei fixed under the standard solvent conditions, and examined in the electron microscope after thin sectioning and staining Nuclei at neutral pH, with different degrees of chromatin condensation, exhibited similar binding capacities for ethidium bromide. These data suggest a model that views chromatin condensation as a close packing of superhelical nucleohistone threads but still permits condensed chromatin to respond rapidly to alterations in solvent environment.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON N. G., WILBUR K. M. Studies on isolated cell components. IV. The effect of various solutions on the isolated rat liver nucleus. J Gen Physiol. 1952 May;35(5):781–796. doi: 10.1085/jgp.35.5.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blobel G., Potter V. R. Nuclei from rat liver: isolation method that combines purity with high yield. Science. 1966 Dec 30;154(3757):1662–1665. doi: 10.1126/science.154.3757.1662. [DOI] [PubMed] [Google Scholar]
  3. Cantor K. P., Hearst J. E. The structure of metaphase chromosomes. I. Electrometric titration, magnesium ion binding and circular dichroism. J Mol Biol. 1970 Apr 14;49(1):213–229. doi: 10.1016/0022-2836(70)90387-6. [DOI] [PubMed] [Google Scholar]
  4. Clark R. J., Felsenfeld G. Structure of chromatin. Nat New Biol. 1971 Jan 27;229(4):101–106. doi: 10.1038/newbio229101a0. [DOI] [PubMed] [Google Scholar]
  5. Glaser M., Singer S. J. Circular dichroism and the conformations of membrane proteins. Studies with red blood cell membranes. Biochemistry. 1971 May 11;10(10):1780–1787. doi: 10.1021/bi00786a008. [DOI] [PubMed] [Google Scholar]
  6. Gordon D. J., Holzwarth G. Artifacts in the measured optic activity of membrane suspensions. Arch Biochem Biophys. 1971 Feb;142(2):481–488. doi: 10.1016/0003-9861(71)90511-x. [DOI] [PubMed] [Google Scholar]
  7. Green R. H., Hobson K. D. Factors determining spatial and size-frequency distributions of Gemma gemma. Science. 1968 Dec 27;162(3861):1509–1510. [PubMed] [Google Scholar]
  8. Henson P., Walker I. O. The partial dissociation of nucleohistone by salts. Circular dichroism and denaturation studies. Eur J Biochem. 1970 Nov;16(3):524–531. doi: 10.1111/j.1432-1033.1970.tb01112.x. [DOI] [PubMed] [Google Scholar]
  9. Kaye J. S., McMaster-Kaye R. The fine structure and chemical composition of nuclei during spermiogenesis in the house cricket. I. Initial stages of differentiation and the loss of nonhistone protein. J Cell Biol. 1966 Oct;31(1):159–179. doi: 10.1083/jcb.31.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kleiman L., Huang R. C. Binding of actinomycin D to calf thymus chromatin. J Mol Biol. 1971 Feb 14;55(3):503–521. doi: 10.1016/0022-2836(71)90333-0. [DOI] [PubMed] [Google Scholar]
  11. Kraemer R. J., Coffey D. S. The interaction of natural and synthetic polyanions with mammalian nucleo. II. Nuclear swelling. Biochim Biophys Acta. 1970 Dec 14;224(2):568–578. [PubMed] [Google Scholar]
  12. LANGENDORF H., SIEBERT G., LORENZ I., HANNOVER R., BEYER R. [Cation distribution in the cell nucleus and cytoplasm of rat liver]. Biochem Z. 1961;335:273–284. [PubMed] [Google Scholar]
  13. LUZZATI V., NICOLAUIEFF A. THE STRUCTURE OF NUCLEOHISTONES AND NUCLEOPROTAMINES. J Mol Biol. 1963 Aug;7:142–163. doi: 10.1016/s0022-2836(63)80043-1. [DOI] [PubMed] [Google Scholar]
  14. Latimer P., Moore D. M., Bryant F. D. Changes in total light scattering and absorption caused by changes in particle conformation. J Theor Biol. 1968 Dec;21(3):348–367. doi: 10.1016/0022-5193(68)90120-3. [DOI] [PubMed] [Google Scholar]
  15. MARVIN D. A., SPENCER M., WILKINS M. H., HAMILTON L. D. The molecular configuration of deoxyribonucleic acid. III. X-ray diffraction study of the C form of the lithium salt. J Mol Biol. 1961 Oct;3:547–565. doi: 10.1016/s0022-2836(61)80021-1. [DOI] [PubMed] [Google Scholar]
  16. Murray K., Bradbury E. M., Crane-Robinson C., Stephens R. M., Haydon A. J., Peacocke A. R. The dissociation of chicken erythrocyte deoxyribonuleoprotein and some properties of its partial nucleoproteins. Biochem J. 1970 Dec;120(4):859–871. doi: 10.1042/bj1200859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olins D. E., Olins A. L. Model nucleohistones: the interaction of F1 and F2al histones with native T7 DNA. J Mol Biol. 1971 May 14;57(3):437–455. doi: 10.1016/0022-2836(71)90102-1. [DOI] [PubMed] [Google Scholar]
  18. PHILPOT J. S., STANIER J. E. The choice of the suspension medium for rat-liver-cell nuclei. Biochem J. 1956 Jun;63(2):214–223. doi: 10.1042/bj0630214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Papageorgiou G. Absorption of light by non-refractive spherical shells. J Theor Biol. 1971 Feb;30(2):249–254. doi: 10.1016/0022-5193(71)90052-x. [DOI] [PubMed] [Google Scholar]
  20. Pardon J. F., Wilkins M. H., Richards B. M. Super-helical model for nucleohistone. Nature. 1967 Jul 29;215(5100):508–509. doi: 10.1038/215508a0. [DOI] [PubMed] [Google Scholar]
  21. Permogorov V. I., Debabov V. G., Sladkova I. A., Rebentish B. A. Structure of DNA and histones in the nucleohistone. Biochim Biophys Acta. 1970 Feb 18;199(2):556–558. doi: 10.1016/0005-2787(70)90107-3. [DOI] [PubMed] [Google Scholar]
  22. RIS H., MIRSKY A. E. The state of the chromosomes in the interphase nucleus. J Gen Physiol. 1949 Mar 20;32(4):489–502. doi: 10.1085/jgp.32.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Richards B. M., Pardon J. F. The molecular structure of nucleohistone (DNH). Exp Cell Res. 1970 Sep;62(1):184–196. doi: 10.1016/0014-4827(79)90519-6. [DOI] [PubMed] [Google Scholar]
  24. Ringertz N. R., Bolund L. Actinomycin binding capacity of deoxyribonucleoprotein. Biochim Biophys Acta. 1969 Jan 21;174(1):147–154. doi: 10.1016/0005-2787(69)90237-8. [DOI] [PubMed] [Google Scholar]
  25. Shih T. Y., Fasman G. D. Conformation of deoxyribonucleic acid in chromatin: a circular dichroism study. J Mol Biol. 1970 Aug 28;52(1):125–129. doi: 10.1016/0022-2836(70)90182-8. [DOI] [PubMed] [Google Scholar]
  26. Simpson R. T., Sober H. A. Circular dichroism of calf liver nucleohistone. Biochemistry. 1970 Aug 4;9(16):3103–3109. doi: 10.1021/bi00818a001. [DOI] [PubMed] [Google Scholar]
  27. Spencer M. Low-angle x-ray diffraction from concentrated sols of F-actin. Nature. 1969 Sep 27;223(5213):1361–1362. doi: 10.1038/2231361a0. [DOI] [PubMed] [Google Scholar]
  28. Tunis-Schneider M. J., Maestre M. F. Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films--a preliminary study. J Mol Biol. 1970 Sep 28;52(3):521–541. doi: 10.1016/0022-2836(70)90417-1. [DOI] [PubMed] [Google Scholar]
  29. Tunis M. J., Hearst J. E. Optical rotatory dispersion of DNA in concentrated salt solutions. Biopolymers. 1968;6(8):1218–1223. doi: 10.1002/bip.1968.360060816. [DOI] [PubMed] [Google Scholar]
  30. Venable J. H., Jr, Spencer M., Ward E. Low-angle x-ray diffraction maxima from ribosomes. Biochim Biophys Acta. 1970;209(2):493–500. doi: 10.1016/0005-2787(70)90746-x. [DOI] [PubMed] [Google Scholar]
  31. WILKINS M. H., ZUBAY G. X-RAY DIFFRACTION STUDY OF THE STRUCTURE OF NUCLEOHISTONE AND NUCLEOPROTAMINES. J Mol Biol. 1963 Dec;7:756–757. doi: 10.1016/s0022-2836(63)80122-9. [DOI] [PubMed] [Google Scholar]
  32. Wagner T., Spelsberg T. C. Aspects of chromosomal structure. I. Circular dichroism studies. Biochemistry. 1971 Jun 22;10(13):2599–2605. doi: 10.1021/bi00789a029. [DOI] [PubMed] [Google Scholar]
  33. Zentgraf H., Deumling B., Franke W. W. Isolation and characterization of nuclei from bird erythrocytes. Exp Cell Res. 1969 Aug;56(2):333–337. doi: 10.1016/0014-4827(69)90022-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES