Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Dec 1;55(3):563–578. doi: 10.1083/jcb.55.3.563

SYNTHETIC STRANDS OF CARDIAC MUSCLE

Formation and Ultrastructure

Joyce E Purdy 1, Melvyn Lieberman 1, Anne E Roggeveen 1, R Gary Kirk 1
PMCID: PMC2108810  PMID: 4656702

Abstract

Spontaneously active bundles of cardiac muscle (synthetic strands) were prepared from isolated cells of 11–13-day old embryonic chick hearts which were disaggregated with trypsin. Linear orientation of the cells was obtained by plating them on agar-coated culture dishes in which either grooves were cut in the agar film or a thin line of palladium was deposited over the agar. The influence of cell-to-cell and cell-to-substrate interactions was observed with time lapse cinematography and the formation of the synthetic strand was shown to involve both random and guided cell movements, enlargement of aggregates by accretion and coalescence, and the compact linear arrangement of cells along paths of preferential adhesion. Electron microscope investigations of these strands showed that a dispersed population of heart cells organized into an inner core of muscle cells and an outer sheath of fibroblast-like cells. The muscle cells contained well-developed, but widely spaced myofibrils, a developing sarcoplasmic reticulum associated in part with the myofibrils and in part with the sarcolemma, an abundance of nonmembrane bound ribosomes and glycogen, and a prominent Golgi complex. Numerous specialized contacts were observed between the muscle cells in the strand, e.g., fasciae adherentes, desmosomes, and nexuses. A distinct type of muscle cell characterized by its pale appearance was regularly observed in the strand and was noted to be similar to Purkinje cells described in the adult avian conduction system and in developing chick myocardium. The present findings were compared with other observations of the developing myocardium, in situ, and it was concluded that, by a number or criteria, the muscle cells of the strand were differentiating normally and suitably organized for electrophysiological studies.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M. Contact inhibition: the phenomenon and its biological implications. Natl Cancer Inst Monogr. 1967 Sep;26:249–277. [PubMed] [Google Scholar]
  2. Armstrong P. B. A fine structural study of adhesive cell junctions in heterotypic cell aggregates. J Cell Biol. 1970 Oct;47(1):197–210. doi: 10.1083/jcb.47.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burdick M. L., Steinberg M. S. Embryonic cell adhesiveness: do species differences exist among warm-blooded vertebrates? Proc Natl Acad Sci U S A. 1969 Aug;63(4):1169–1173. doi: 10.1073/pnas.63.4.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CEDERGREN B., HARARY I. IN VITRO STUDIES ON SINGLE BEATING RAT HEART CELLS. VI. ELECTRON MICROSCOPIC STUDIES OF SINGLE CELLS. J Ultrastruct Res. 1964 Dec;11:428–442. doi: 10.1016/s0022-5320(64)80074-5. [DOI] [PubMed] [Google Scholar]
  5. CEDERGREN B., HARARY I. IN VITRO STUDIES ON SINGLE BEATING RAT HEART CELLS. VII. ULTRASTRUCTURE OF THE BEATING CELL LAYER. J Ultrastruct Res. 1964 Dec;11:443–454. doi: 10.1016/s0022-5320(64)80075-7. [DOI] [PubMed] [Google Scholar]
  6. Campbell G. R., Uehara Y., Mark G., Burnstock G. Fine structure of smooth muscle cells grown in tissue culture. J Cell Biol. 1971 Apr;49(1):21–34. doi: 10.1083/jcb.49.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carter S. B. Principles of cell motility: the direction of cell movement and cancer invasion. Nature. 1965 Dec 18;208(5016):1183–1187. doi: 10.1038/2081183a0. [DOI] [PubMed] [Google Scholar]
  8. Curtis A. S. On the occurrence of specific adhesion between cells. J Embryol Exp Morphol. 1970 Feb;23(1):253–272. [PubMed] [Google Scholar]
  9. DeHaan R. L., Hirakow R. Synchronizatin of pulsation rates in isolated cardiac myocytes. Exp Cell Res. 1972 Jan;70(1):214–220. doi: 10.1016/0014-4827(72)90199-1. [DOI] [PubMed] [Google Scholar]
  10. Goshima K. Formation of nexuses and electrotonic transmission between myocardial and FL cells in monolayer culture. Exp Cell Res. 1970 Nov;63(1):124–130. doi: 10.1016/0014-4827(70)90339-3. [DOI] [PubMed] [Google Scholar]
  11. HARARY I., FARLEY B. In vitro studies on single beating rat heart cells. II. Intercellular communication. Exp Cell Res. 1963 Feb;29:466–474. doi: 10.1016/s0014-4827(63)80009-9. [DOI] [PubMed] [Google Scholar]
  12. Hagopian M., Spiro D. Derivation of the Z line in the embryonic chick heart. J Cell Biol. 1970 Mar;44(3):683–687. doi: 10.1083/jcb.44.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halbert S. P., Bruderer R., Lin T. M. In vitro organization of dissociated rat cardiac cells into beating three-dimensional structures. J Exp Med. 1971 Apr 1;133(4):677–695. doi: 10.1084/jem.133.4.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jewett P. H., Sommer J. R., Johnson E. A. Cardiac muscle. Its ultrastructure in the finch and hummingbird with special reference to the sarcoplasmic reticulum. J Cell Biol. 1971 Apr;49(1):50–65. doi: 10.1083/jcb.49.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson E. A., Lieberman M. Heart: excitation and contraction. Annu Rev Physiol. 1971;33:479–532. doi: 10.1146/annurev.ph.33.030171.002403. [DOI] [PubMed] [Google Scholar]
  17. Kaufmann R., Tritthart H., Rodenroth S., Rost B. Das mechanische und elektrische Verhalten isolierter embryonaler Hermuskelzellen in Zellkulturen. Pflugers Arch. 1969;311(1):25–49. doi: 10.1007/BF00588060. [DOI] [PubMed] [Google Scholar]
  18. LESSEPS R. J. CELL SURFACE PROJECTIONS: THEIR ROLE IN THE AGGREGATION OF EMBRYONIC CHICK CELLS AS REVEALED BY ELECTRON MICROSCOPY. J Exp Zool. 1963 Jul;153:171–182. doi: 10.1002/jez.1401530209. [DOI] [PubMed] [Google Scholar]
  19. Legato M. J. Sarcomerogenesis in human myocardium. J Mol Cell Cardiol. 1970 Dec;1(4):425–437. doi: 10.1016/0022-2828(70)90039-8. [DOI] [PubMed] [Google Scholar]
  20. Lieberman M. Effects of cell density and low K on action potentials of cultured chick heart cells. Circ Res. 1967 Dec;21(6):879–888. doi: 10.1161/01.res.21.6.879. [DOI] [PubMed] [Google Scholar]
  21. Lieberman M., Roggeveen A. E., Purdy J. E., Johnson E. A. Synthetic strands of cardiac muscle: growth and physiological implication. Science. 1972 Feb 25;175(4024):909–911. doi: 10.1126/science.175.4024.909. [DOI] [PubMed] [Google Scholar]
  22. MUIR A. R. An electron microscope study of the embryology of the intercalated disc in the heart of the rabbit. J Biophys Biochem Cytol. 1957 Mar 25;3(2):193–202. doi: 10.1083/jcb.3.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Manasek F. J. Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol. 1968 Jul;125(3):329–365. doi: 10.1002/jmor.1051250306. [DOI] [PubMed] [Google Scholar]
  24. Manasek F. J. Embryonic development of the heart. II. Formation of the epicardium. J Embryol Exp Morphol. 1969 Nov;22(3):333–348. [PubMed] [Google Scholar]
  25. Manasek F. J. Histogenesis of the embryonic myocardium. Am J Cardiol. 1970 Feb;25(2):149–168. doi: 10.1016/0002-9149(70)90576-x. [DOI] [PubMed] [Google Scholar]
  26. Matter A., Girardier L., Hyde A., Blondel B. Untersuchungen zur Entwicklung des sarkoplasmatischen Retikulums in kultivierten Herzmuskelzellen. Verh Anat Ges. 1969;63:561–565. [PubMed] [Google Scholar]
  27. McNutt N. S. Ultrastructure of intercellular junctions in adult and developing cardiac muscle. Am J Cardiol. 1970 Feb;25(2):169–183. doi: 10.1016/0002-9149(70)90577-1. [DOI] [PubMed] [Google Scholar]
  28. Melax H., Leeson T. S. Fine structure of developing and adult intercalated discs in rat heart. Cardiovasc Res. 1969 Jul;3(3):261–267. doi: 10.1093/cvr/3.3.261. [DOI] [PubMed] [Google Scholar]
  29. Okarma T. B., Kalman S. M. Photoelectric monitoring of single beating heart cells in culture. Exp Cell Res. 1971 Nov;69(1):128–134. doi: 10.1016/0014-4827(71)90318-1. [DOI] [PubMed] [Google Scholar]
  30. ROSENBERG M. D. Cell guidance by alterations in monomolecular films. Science. 1963 Feb 1;139(3553):411–412. doi: 10.1126/science.139.3553.411. [DOI] [PubMed] [Google Scholar]
  31. Rash J. E., Biesele J. J., Gey G. O. Three classes of filaments in cardiac differentiation. J Ultrastruct Res. 1970 Dec;33(5):408–435. doi: 10.1016/s0022-5320(70)90171-1. [DOI] [PubMed] [Google Scholar]
  32. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roth S. Studies on intercellular adhesive selectivity. Dev Biol. 1968 Dec;18(6):602–631. doi: 10.1016/0012-1606(68)90029-8. [DOI] [PubMed] [Google Scholar]
  34. Sato T. A modified method for lead staining of thin sections. J Electron Microsc (Tokyo) 1968;17(2):158–159. [PubMed] [Google Scholar]
  35. Schiaffino S., Margreth A. Coordinated development of the sarcoplasmic reticulum and T system during postnatal differentiation of rat skeletal muscle. J Cell Biol. 1969 Jun;41(3):855–875. doi: 10.1083/jcb.41.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schiaffino S., Settembrini P. Studies on the effect of denervation in developing muscle. I. Differentiation of the sarcotubular system. Virchows Arch B Cell Pathol. 1970;4(4):345–356. doi: 10.1007/BF02906089. [DOI] [PubMed] [Google Scholar]
  37. Sommer J. R., Johnson E. A. Cardiac muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z Zellforsch Mikrosk Anat. 1969;98(3):437–468. [PubMed] [Google Scholar]
  38. Spira A. W. Cell junctions and their role in transmural diffusion in the embryonic chick heart. Z Zellforsch Mikrosk Anat. 1971;120(4):463–487. doi: 10.1007/BF00340585. [DOI] [PubMed] [Google Scholar]
  39. Steinberg M. S. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J Exp Zool. 1970 Apr;173(4):395–433. doi: 10.1002/jez.1401730406. [DOI] [PubMed] [Google Scholar]
  40. TAYLOR A. C. Attachment and spreading of cells in culture. Exp Cell Res. 1961;Suppl 8:154–173. doi: 10.1016/0014-4827(61)90346-9. [DOI] [PubMed] [Google Scholar]
  41. TRINKAUS J. P., LENTZ J. P. DIRECT OBSERVATION OF TYPE-SPECIFIC SEGREGATION IN MIXED CELL AGGREGATES. Dev Biol. 1964 Feb;9:115–136. doi: 10.1016/0012-1606(64)90017-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES