Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Dec 1;55(3):653–680. doi: 10.1083/jcb.55.3.653

SPECIFIC PROTEIN SYNTHESIS IN CELLULAR DIFFERENTIATION

Production of Eggshell Proteins by Silkmoth Follicular Cells

M Paul 1, M R Goldsmith 1, J R Hunsley 1, F C Kafatos 1
PMCID: PMC2108812  PMID: 4656706

Abstract

Silkmoth follicles, arranged in a precise developmental sequence within the ovariole, yield pure and uniform populations of follicular epithelial cells highly differentiated for synthesis of the proteinaceous eggshell (chorion). These cells can be maintained and labeled efficiently in organ culture; their in vitro (and cell free) protein synthetic activity reflects their activity in vivo. During differentiation the cells undergo dramatic changes in protein synthesis. For 2 days the cells are devoted almost exclusively to production of distinctive chorion proteins of low molecular weight and of unusual amino acid composition. Each protein has its own characteristic developmental kinetics of synthesis. Each is synthesized as a separate polypeptide, apparently on monocistronic messenger RNA (mRNA), and thus reflects the expression of a distinct gene. The rapid changes in this tissue do not result from corresponding changes in translational efficiency. Thus, the peptide chain elongation rate is comparable for chorion and for proteins synthesized at earlier developmental stages (1.3–1.9 amino acids/sec); moreover, the spacing of ribosomes on chorion mRNA (30–37 codons per ribosome) is similar to that encountered in other eukaryotic systems.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger E., Kafatos F. C. Quantitative studies of prococoonase synthesis and accumulation during development. Dev Biol. 1971 Jul;25(3):377–397. doi: 10.1016/0012-1606(71)90038-8. [DOI] [PubMed] [Google Scholar]
  2. Boshes R. A. Drosophila polyribosomes. The characterization of two populations by cell fractionation and isotopic labeling with nucleic acid and protein precursors. J Cell Biol. 1970 Sep;46(3):477–490. doi: 10.1083/jcb.46.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FLECK A., MUNRO H. N. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta. 1962 May 14;55:571–583. doi: 10.1016/0006-3002(62)90836-3. [DOI] [PubMed] [Google Scholar]
  4. Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. doi: 10.1016/0022-2836(70)90091-4. [DOI] [PubMed] [Google Scholar]
  5. GRACE T. D. Establishment of four strains of cells from insect tissues grown in vitro. Nature. 1962 Aug 25;195:788–789. doi: 10.1038/195788a0. [DOI] [PubMed] [Google Scholar]
  6. Gorovsky M. A., Carlson K., Rosenbaum J. L. Simple method for quantitive densitometry of polyacrylamide gels using fast green. Anal Biochem. 1970 Jun;35(2):359–370. doi: 10.1016/0003-2697(70)90196-x. [DOI] [PubMed] [Google Scholar]
  7. Hunt T., Hunter T., Munro A. Control of haemoglobin synthesis: distribution of ribosomes on the messenger RNA for alpha and beta chains. J Mol Biol. 1968 Aug 28;36(1):31–45. doi: 10.1016/0022-2836(68)90217-9. [DOI] [PubMed] [Google Scholar]
  8. Kaempfer R. O., Meselson M., Raskas H. J. Cyclic dissociation into stable subunits and re-formation of ribosomes during bacterial growth. J Mol Biol. 1968 Jan 28;31(2):277–289. doi: 10.1016/0022-2836(68)90444-0. [DOI] [PubMed] [Google Scholar]
  9. Kaempfer R. Dissociation of ribosomes on polypeptide chain termination and origin of single ribosomes. Nature. 1970 Nov 7;228(5271):534–537. doi: 10.1038/228534a0. [DOI] [PubMed] [Google Scholar]
  10. Kafatos F. C., Kiortsis V. The packaging of a secretory protein. Kinetics of cocoonase zymogen transport into a storage vacuole. J Cell Biol. 1971 Feb;48(2):426–431. doi: 10.1083/jcb.48.2.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kafatos F. C. The cocoonase zymogen cells of silk moths: a model of terminal cell differentiation for specific protein synthesis. Curr Top Dev Biol. 1972;7:125–191. doi: 10.1016/s0070-2153(08)60071-x. [DOI] [PubMed] [Google Scholar]
  12. Kawasaki H., Sato H., Suzuki M., Ojima N. Conversion of serine to glycine during the formation of egg-shells in the silkworm, bombyx mori. J Insect Physiol. 1969 Jan;15(1):25–32. doi: 10.1016/0022-1910(69)90209-1. [DOI] [PubMed] [Google Scholar]
  13. Kawasaki H., Sato H., Suzuki M. Structural proteins in the egg-shell of the oriental garden cricket, Gryllus mitratus. Biochem J. 1971 Nov;125(2):495–505. doi: 10.1042/bj1250495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PETERMANN M. L., PAVLOVEC A. Ribonucleoprotein from a rat tumor, the Jensen sarcoma. III. Ribosomes purified without deoxycholate but with bentonite as ribonuclease inhibitor. J Biol Chem. 1963 Jan;238:318–323. [PubMed] [Google Scholar]
  15. Paul M., Kafatos F. C., Regier J. C. A comparative study of eggshell proteins in lepidoptera. J Supramol Struct. 1972;1(1):60–65. doi: 10.1002/jss.400010109. [DOI] [PubMed] [Google Scholar]
  16. Pollack S. B., Telfer W. H. RNA in cecropia moth ovaries: sites of synthesis, transport, and storage. J Exp Zool. 1969 Jan;170(1):1–23. doi: 10.1002/jez.1401700102. [DOI] [PubMed] [Google Scholar]
  17. Pringle J. R. The molecular weight of the undegraded polypeptide chain of yeast hexokinase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):46–52. doi: 10.1016/0006-291x(70)90755-2. [DOI] [PubMed] [Google Scholar]
  18. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  19. ROTH J. S. Ribonuclease. V. Studies on the properties and distribution of ribonuclease inhibitor in the rat. Biochim Biophys Acta. 1956 Jul;21(1):34–43. doi: 10.1016/0006-3002(56)90091-9. [DOI] [PubMed] [Google Scholar]
  20. STAEHELIN T., WETTSTEIN F. O., OURA H., NOLL H. DETERMINATION OF THE CODING RATIO BASED ON MOLECULAR WEIGHT OF MESSENGER RIBONUCLEIC ACID ASSOCIATED WITH ERGOSOMES OF DIFFERENT AGGREGATE SIZE. Nature. 1964 Jan 18;201:264–270. doi: 10.1038/201264a0. [DOI] [PubMed] [Google Scholar]
  21. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  22. Telfer W. H., Anderson L. M. Functional transformations accompanying the initiation of a terminal growth phase in the cecropia moth oocyte. Dev Biol. 1968 May;17(5):512–535. doi: 10.1016/0012-1606(68)90002-x. [DOI] [PubMed] [Google Scholar]
  23. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  24. Weevers R. D. A lepidopteran saline: effects of inorganic cation concentrations on sensory, reflex and motor responses in a herbivorous insect. J Exp Biol. 1966 Feb;44(1):163–175. doi: 10.1242/jeb.44.1.163. [DOI] [PubMed] [Google Scholar]
  25. Yund M. A., Yund E. W., Kafatos F. C. A computer method for analysis of radioactivity data from single and double labeled experiments. Biochem Biophys Res Commun. 1971 May 21;43(4):717–722. doi: 10.1016/0006-291x(71)90674-7. [DOI] [PubMed] [Google Scholar]
  26. Zylber E. A., Penman S. The effect of high ionic strength on monomers, polyribosomes, and puromycin-treated polyribosomes. Biochim Biophys Acta. 1970 Mar 19;204(1):221–229. doi: 10.1016/0005-2787(70)90505-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES