Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Dec 1;55(3):595–605. doi: 10.1083/jcb.55.3.595

PROTEIN SYNTHESIS IN THE VISUAL CELLS OF THE HONEYBEE DRONE AS STUDIED WITH ELECTRON MICROSCOPE RADIOAUTOGRAPHY

Alain Perrelet 1
PMCID: PMC2108825  PMID: 4656703

Abstract

Protein synthesis was studied in the visual cells of an insect (honeybee drone, Apis mellifera) by electron microscope radioautography. After a single injection of tritiated leucine, the radioactivity first appears in the cytoplasm of the visual cell which contains ribosomes. Later, part of this radioactivity migrates to the rhabdome, the visual cell region which is specialized in light absorption. A maximal concentration of radioactivity is reached there 48 hr after the injection of leucine. This pattern of protein synthesis and transport resembles that described in vertebrate visual cells (rods and cones), where newly synthesized proteins have been shown to contribute to the renewal of the photoreceptor membrane.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blasie J. K., Worthington C. R. Molecular localization of frog retinal receptor photopigment by electron microscopy and low-angle X-ray diffraction. J Mol Biol. 1969 Feb 14;39(3):407–416. doi: 10.1016/0022-2836(69)90135-1. [DOI] [PubMed] [Google Scholar]
  2. Burnel M., Mahler H. R., Moore W. J. Protein synthesis in visual cells of Limulus. J Neurochem. 1970 Oct;17(10):1493–1499. doi: 10.1111/j.1471-4159.1970.tb00516.x. [DOI] [PubMed] [Google Scholar]
  3. CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall M. O., Bok D., Bacharach A. D. Biosynthesis and assembly of the rod outer segment membrane system. Formation and fate of visual pigment in the frog retina. J Mol Biol. 1969 Oct 28;45(2):397–406. doi: 10.1016/0022-2836(69)90114-4. [DOI] [PubMed] [Google Scholar]
  6. Langer H., Thorell B. Microspectrophotometry of single rhabdomeres in the insect eye. Exp Cell Res. 1966 Mar;41(3):673–677. doi: 10.1016/s0014-4827(66)80119-2. [DOI] [PubMed] [Google Scholar]
  7. Pepe I. M., Baumann F. Incorporation of 3 H-labelled leucine into the protein fraction in the retina of the honeybee drone. J Neurochem. 1972 Feb;19(2):507–512. doi: 10.1111/j.1471-4159.1972.tb01360.x. [DOI] [PubMed] [Google Scholar]
  8. Perrelet A. The fine structure of the retina of the honey bee drone. An electron microscopical study. Z Zellforsch Mikrosk Anat. 1970;108(4):530–562. doi: 10.1007/BF00339658. [DOI] [PubMed] [Google Scholar]
  9. Peters T., Jr, Ashley C. A. An artefact in radioautography due to binding of free amino acids to tissues by fixatives. J Cell Biol. 1967 Apr;33(1):53–60. doi: 10.1083/jcb.33.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Worthington C. R. Structure of photoreceptor membranes. Fed Proc. 1971 Jan-Feb;30(1):57–63. [PubMed] [Google Scholar]
  12. Young R. W., Droz B. The renewal of protein in retinal rods and cones. J Cell Biol. 1968 Oct;39(1):169–184. doi: 10.1083/jcb.39.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES