Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Jan 1;56(1):1–12. doi: 10.1083/jcb.56.1.1

CONTROL OF THE SYNTHESIS OF A MAJOR POLYPEPTIDE OF CHLOROPLAST MEMBRANES IN CHLAMYDOMONAS REINHARDI

J Kenneth Hoober 1, William J Stegeman 1
PMCID: PMC2108835  PMID: 4682340

Abstract

The regulation of the synthesis of one of the major polypeptides of chloroplast membranes in Chlamydomonas reinhardi y-1 has been studied in order to determine what factors are involved in the control mechanism. The polypeptide is synthesized in the cytoplasm and previously was designated as c (J. K Hoober. 1972. J. Cell Biol. 52:84). Under normal conditions the synthesis of polypeptide c appears to be coupled to the synthesis of chlorophyll. When greening cells are illuminated through a light filter opaque below 675 mµ, the conversion of protochlorophyllide to chlorophyllide is blocked. Although this elimination of light below 675 mµ, does not affect, in the main, protein synthesis in the chloroplast and cytoplasm, synthesis of polypeptide c is inhibited. Also, control cells synthesize neither chlorophyll nor polypeptide c in the dark. However, when cells are treated with chloramphenicol, an inhibitor of chloroplast protein synthesis, the synthesis of polypeptide c occurs in the absence of light required for chlorophyll synthesis. Chlorophyll per se does not appear to be required for synthesis of polypeptide c, since treating cells with hemin, maleate, or malonate causes an inhibition of the synthesis of chlorophyll but not of polypeptide c. The results of these experiments are discussed in terms of a proposed mechanism by which synthesis of polypeptide c is regulated at the transcriptional level by a precursor of chlorophyll, and this regulation is mediated by a protein or proteins synthesized within the chloroplast.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURNHAM B. F., PIERCE W. S., WILLIAMS K. R., BOYER M. H., KIRBY C. K. delta-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J. 1963 Jun;87:462–472. doi: 10.1042/bj0870462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bottomley W., Spencer D., Wheeler A. M., Whitfeld P. R. The effect of a range of RNA polymerase inhibitors on RNA synthesis in higher plant chloroplasts and nuclei. Arch Biochem Biophys. 1971 Mar;143(1):269–275. doi: 10.1016/0003-9861(71)90209-8. [DOI] [PubMed] [Google Scholar]
  4. Burns E. R., Buchanan G. A., Carter M. C. Inhibition of carotenoid synthesis as a mechanism of action of amitrole, dichlormate, and pyriclor. Plant Physiol. 1971 Jan;47(1):144–148. doi: 10.1104/pp.47.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CARELL E. F., KAHN J. S. SYNTHESIS OF PORPHYRINS BY ISOLATED CHLOROPLASTS OF EUGLENA. Arch Biochem Biophys. 1964 Oct;108:1–6. doi: 10.1016/0003-9861(64)90347-9. [DOI] [PubMed] [Google Scholar]
  6. Ellis R. J., Hartley M. R. Sites of synthesis of chloroplast proteins. Nature. 1971 Oct 13;233(5320):193–196. [PubMed] [Google Scholar]
  7. Ellis R. J. [Chloroplast ribosomes: stereospecificity of inhibition by chloramphenicol]. Science. 1969 Jan 31;163(3866):477–478. doi: 10.1126/science.163.3866.477. [DOI] [PubMed] [Google Scholar]
  8. Eytan G., Ohad I. Biogenesis of chloroplast membranes. 8. Modulation of chloroplast lamellae composition and function induced by discontinuous illumination and inhibition of ribonucleic acid and protein synthesis during greening of Chlamydomonas reinhardi y-1 mutant cells. J Biol Chem. 1972 Jan 10;247(1):122–129. [PubMed] [Google Scholar]
  9. Eytan G., Ohad I. Biogenesis of chloroplast membranes. VI. Cooperation between cytoplasmic and chloroplast ribosomes in the synthesis of photosynthetic lamellar proteins during the greening process in a mutant of Chlamydomonas reinhardi y-1. J Biol Chem. 1970 Sep 10;245(17):4297–4307. [PubMed] [Google Scholar]
  10. GIBSON K. D., NEUBERGER A., TAIT G. H. Studies on the biosynthesis of porphyrin and bacteriochlorophyll by Rhodopseudomonas spheroides. 2. The effects of ethionine and threonine. Biochem J. 1962 Jun;83:550–559. doi: 10.1042/bj0830550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GREULACH V. A. Effects on plant growth of some compounds with structural similarities to maleic hydrazide. Science. 1953 May 29;117(3048):601–603. doi: 10.1126/science.117.3048.601. [DOI] [PubMed] [Google Scholar]
  12. Goldberg I., Ohad I. Biogenesis of chloroplast membranes. V. A radioautographic study of membrane growth in a mutant of Chlamydomonas reinhardi y-1. J Cell Biol. 1970 Mar;44(3):572–591. doi: 10.1083/jcb.44.3.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoober J. K., Blobel G. Characterization of the chloroplastic and cytoplasmic ribosomes of Chlamydomonas reinhardi. J Mol Biol. 1969 Apr 14;41(1):121–138. doi: 10.1016/0022-2836(69)90130-2. [DOI] [PubMed] [Google Scholar]
  14. Joliot P., Joliot A., Kok B. Analysis of the interactions between the two photosystems in isolated chloroplasts. Biochim Biophys Acta. 1968 Apr 2;153(3):635–652. doi: 10.1016/0005-2728(68)90191-6. [DOI] [PubMed] [Google Scholar]
  15. Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):521–552. doi: 10.1083/jcb.35.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):553–584. doi: 10.1083/jcb.35.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paulsen J. M., Lane M. D. Spinach ribulose diphosphate carboxylase. I. Purification and properties of the enzyme. Biochemistry. 1966 Jul;5(7):2350–2357. doi: 10.1021/bi00871a025. [DOI] [PubMed] [Google Scholar]
  18. Rutner A. C., Lane M. D. Nonidentical subunits of ribulose diphosphate carboxylase. Biochem Biophys Res Commun. 1967 Aug 23;28(4):531–537. doi: 10.1016/0006-291x(67)90346-4. [DOI] [PubMed] [Google Scholar]
  19. SAGER R., PALADE G. E. Chloroplast structure in green and yellow strains of Chlamydomonas. Exp Cell Res. 1954 Nov;7(2):584–588. doi: 10.1016/s0014-4827(54)80107-8. [DOI] [PubMed] [Google Scholar]
  20. Warnick G. R., Burnham B. F. Regulation of prophyrin biosynthesis. Purification and characterization of -aminolevulinic acid synthase. J Biol Chem. 1971 Nov 25;246(22):6880–6885. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES