Abstract
Light and electron microscopy are used in this study to compare chondrogenesis in cultured somites with vertebral chondrogenesis These studies have also characterized some of the effects of inducer tissues (notochord and spinal cord), and different nutrient media, on chondrogenesis in cultured somites Somites from stage 17 (54–60 h) chick embryos were cultured, with or without inducer tissues, and were fed nutrient medium containing either horse serum (HS) and embryo extract (EE), or fetal calf serum (FCS) and F12X Amino acid analyses were also utilized to determine the collagen content of vertebral body cartilage in which the fibrils are homogeneously thin (ca. 150 Å) and unbanded. These analyses provide strong evidence that the thin unbanded fibrils in embryonic cartilage matrix are collagen. These thin unbanded collagen fibrils, and prominent 200–800 Å protein polysaccharide granules, constitute the structured matrix components of both developing vertebral cartilage and the cartilage formed in cultured somites Similar matrix components accumulate around the inducer tissues notochord and spinal cord. These matrix components are structurally distinct from those in embryonic fibrous tissue The synthesis of matrix by the inducer tissues is associated with the inductive interaction of these tissues with somitic mesenchyme. Due to the deleterious effects of tissue isolation and culture procedures many cells die in somitic mesenchyme during the first 24 h in culture. In spite of this cell death, chondrogenic areas are recognized after 12 h in induced cultures, and through the first 2 days in all cultures there are larger accumulations of structured matrix than are present in equivalently aged somitic mesenchyme in vivo. Surviving chondrogenic areas develop into nodules of hyaline cartilage in all induced cultures, and in most non-induced cultures fed medium containing FCS and F12X There is more cell death, less matrix accumulation, and less cartilage formed in cultures fed medium containing HS and EE. The inducer tissues, as well as nutrient medium containing FCS and F12X, facilitate cell survival, the synthesis and accumulation of cartilage matrix, and the formation of cartilage nodules in cultured somites.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN E. R., PEPE F. A. ULTRASTRUCTURE OF DEVELOPING MUSCLE CELLS IN THE CHICK EMBRYO. Am J Anat. 1965 Jan;116:115–147. doi: 10.1002/aja.1001160107. [DOI] [PubMed] [Google Scholar]
- Abbott J., Mayne R., Holtzer H. Inhibition of cartilage development in organ cultures of chick somites by the thymidine analog, 5-bromo-2'-deoxyuridine. Dev Biol. 1972 Jun;28(2):430–442. doi: 10.1016/0012-1606(72)90024-3. [DOI] [PubMed] [Google Scholar]
- Ali S. Y., Sajdera S. W., Anderson H. C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1513–1520. doi: 10.1073/pnas.67.3.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson H. C., Sajdera S. W. The fine structure of bovine nasal cartilage. Extraction as a technique to study proteoglycans and collagen in cartilage matrix. J Cell Biol. 1971 Jun;49(3):650–663. doi: 10.1083/jcb.49.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson H. C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969 Apr;41(1):59–72. doi: 10.1083/jcb.41.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chacko S., Holtzer S., Holtzer H. Suppression of chondrogenic expression in mixtures of normal chondrocytes and BUDR-altered chondrocytes grown in vitro. Biochem Biophys Res Commun. 1969 Jan 27;34(2):183–189. doi: 10.1016/0006-291x(69)90629-9. [DOI] [PubMed] [Google Scholar]
- Cohen A. M., Hay E. D. Secretion of collagen by embryonic neuroepithelium at the time of spinal cord--somite interaction. Dev Biol. 1971 Dec;26(4):578–605. doi: 10.1016/0012-1606(71)90142-4. [DOI] [PubMed] [Google Scholar]
- Cooper G. W. Induction of somite chondrogenesis by cartilage and notochord: a correlation between inductive activity and specific stages of cytodifferentiation. Dev Biol. 1965 Oct;12(2):185–212. doi: 10.1016/0012-1606(65)90027-8. [DOI] [PubMed] [Google Scholar]
- De la Haba G., Holtzer H. Chondroitin sulfate: inhibition of synthesis by puromycin. Science. 1965 Sep 10;149(3689):1263–1265. doi: 10.1126/science.149.3689.1263. [DOI] [PubMed] [Google Scholar]
- Ellison M. L., Ambrose E. J., Easty G. C. Chondrogenesis in chick embryo somites in vitro. J Embryol Exp Morphol. 1969 Apr;21(2):331–340. [PubMed] [Google Scholar]
- Ellison M. L., Lash J. W. Environmental enhancement of in vitro chondrogenesis. Dev Biol. 1971 Nov;26(3):486–496. doi: 10.1016/0012-1606(71)90078-9. [DOI] [PubMed] [Google Scholar]
- Franco-Browder S., Rydt J. D., Dorfman A. THE IDENTIFICATION OF A SULFATED MUCOPOLYSACCHARIDE IN CHICK EMBRYOS, STAGES 11-23. Proc Natl Acad Sci U S A. 1963 May;49(5):643–647. doi: 10.1073/pnas.49.5.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frederickson R. G., Low F. N. The fine structure of perinotochordal microfibrils in control and enzyme-treated chick embryos. Am J Anat. 1971 Mar;130(3):347–375. doi: 10.1002/aja.1001300307. [DOI] [PubMed] [Google Scholar]
- Hascall V. C., Sajdera S. W. Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem. 1969 May 10;244(9):2384–2396. [PubMed] [Google Scholar]
- ITO S., WINCHESTER R. J. The fine structure of the gastric mucosa in the bat. J Cell Biol. 1963 Mar;16:541–577. doi: 10.1083/jcb.16.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kvist T. N., Finnegan C. V. The distribution of glycosaminoglycans in the axial region of the developing chick embryo. 1. Histochemical analysis. J Exp Zool. 1970 Oct;175(2):221–239. doi: 10.1002/jez.1401750209. [DOI] [PubMed] [Google Scholar]
- Matukas V. J., Panner B. J., Orbison J. L. Studies on ultrastructural identification and distribution of protein-polysaccharide in cartilage matrix. J Cell Biol. 1967 Feb;32(2):365–377. doi: 10.1083/jcb.32.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayne R., Sanger J. W., Holtzer H. Inhibition of mucopolysaccharide synthesis by 5-bromodeoxyuridine in cultures of chick amnion cells. Dev Biol. 1971 Aug;25(4):547–567. doi: 10.1016/0012-1606(71)90005-4. [DOI] [PubMed] [Google Scholar]
- Olson M. D., Low F. N. The fine structure of developing cartilage in the chick embryo. Am J Anat. 1971 Jun;131(2):197–215. doi: 10.1002/aja.1001310205. [DOI] [PubMed] [Google Scholar]
- Rosenberg L., Hellmann W., Kleinschmidt A. K. Macromolecular models of proteinpolysaccharides from bovine nasal cartilage based on electron microscopic studies. J Biol Chem. 1970 Aug 25;245(16):4123–4130. [PubMed] [Google Scholar]
- Ross R., Bornstein P. The elastic fiber. I. The separation and partial characterization of its macromolecular components. J Cell Biol. 1969 Feb;40(2):366–381. doi: 10.1083/jcb.40.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimada Y., Fischman D. A., Moscona A. A. Formation of neuromuscular junctions in embryonic cell cultures. Proc Natl Acad Sci U S A. 1969 Mar;62(3):715–721. doi: 10.1073/pnas.62.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. W. The disposition of proteinpolysaccharide in the epiphysial plate cartilage of the young rabbit. J Cell Sci. 1970 May;6(3):843–864. doi: 10.1242/jcs.6.3.843. [DOI] [PubMed] [Google Scholar]
- Trelstad R. L., Hay E. D., Revel J. D. Cell contact during early morphogenesis in the chick embryo. Dev Biol. 1967 Jul;16(1):78–106. doi: 10.1016/0012-1606(67)90018-8. [DOI] [PubMed] [Google Scholar]
- Trelstad R. L., Kang A. H., Igarashi S., Gross J. Isolation of two distinct collagens from chick cartilage. Biochemistry. 1970 Dec 8;9(25):4993–4998. doi: 10.1021/bi00827a025. [DOI] [PubMed] [Google Scholar]
- WATTERSON R. L., FOWLER I., FOWLER B. J. The role of the neural tube and notochord in development of the axial skeleton of the chick. Am J Anat. 1954 Nov;95(3):337–399. doi: 10.1002/aja.1000950302. [DOI] [PubMed] [Google Scholar]