Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Jan 1;56(1):206–229. doi: 10.1083/jcb.56.1.206

RIBOSOME-MEMBRANE INTERACTION

Nondestructive Disassembly of Rat Liver Rough Microsomes into Ribosomal and Membranous Components

M R Adelman 1, David D Sabatini 1, Günter Blobel 1
PMCID: PMC2108843  PMID: 4682341

Abstract

In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (∼15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN D. W., ZAMECNIK P. C. The effect of puromycin on rabbit reticulocyte ribosomes. Biochim Biophys Acta. 1962 Jun 11;55:865–874. doi: 10.1016/0006-3002(62)90899-5. [DOI] [PubMed] [Google Scholar]
  2. Adelman M. R., Blobel G., Sabatini D. D. An improved cell fractionation procedure for the preparation of rat liver membrane-bound ribosomes. J Cell Biol. 1973 Jan;56(1):191–205. doi: 10.1083/jcb.56.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blobel G. Isolation of a 5S RNA-protein complex from mammalian ribosomes. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1881–1885. doi: 10.1073/pnas.68.8.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blobel G., Potter V. R. Studies on free and membrane-bound ribosomes in rat liver. I. Distribution as related to total cellular RNA. J Mol Biol. 1967 Jun 14;26(2):279–292. doi: 10.1016/0022-2836(67)90297-5. [DOI] [PubMed] [Google Scholar]
  5. Blobel G., Potter V. R. Studies on free and membrane-bound ribosomes in rat liver. II. Interaction of ribosomes and membranes. J Mol Biol. 1967 Jun 14;26(2):293–301. doi: 10.1016/0022-2836(67)90298-7. [DOI] [PubMed] [Google Scholar]
  6. Blobel G., Sabatini D. D. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J Cell Biol. 1970 Apr;45(1):130–145. doi: 10.1083/jcb.45.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blobel G., Sabatini D. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc Natl Acad Sci U S A. 1971 Feb;68(2):390–394. doi: 10.1073/pnas.68.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fisher M. P., Dingman C. W. Role of molecular conformation in determining the electrophoretic properties of polynucleotides in agarose-acrylamide composite gels. Biochemistry. 1971 May 11;10(10):1895–1899. doi: 10.1021/bi00786a026. [DOI] [PubMed] [Google Scholar]
  9. Gaye P., Denamur R. Preferential synthesis of beta lactoglobulin by the bound polyribosomes of the mammary gland. Biochem Biophys Res Commun. 1970 Oct 9;41(1):266–272. doi: 10.1016/0006-291x(70)90498-5. [DOI] [PubMed] [Google Scholar]
  10. Hicks S. J., Drysdale J. W., Munro H. N. Preferential synthesis of ferritin and albumin by different populations of liver polysomes. Science. 1969 May 2;164(3879):584–585. doi: 10.1126/science.164.3879.584. [DOI] [PubMed] [Google Scholar]
  11. Infante A. A., Baierlein R. Pressure-induced dissociation of sedimenting ribosomes: effect on sedimentation patterns. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1780–1785. doi: 10.1073/pnas.68.8.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee S. Y., Krsmanovic V., Brawerman G. Attachment of ribosomes to membranes during polysome formation in mouse sarcoma 180 cells. J Cell Biol. 1971 Jun;49(3):683–691. doi: 10.1083/jcb.49.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  14. Malkin L. I., Rich A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J Mol Biol. 1967 Jun 14;26(2):329–346. doi: 10.1016/0022-2836(67)90301-4. [DOI] [PubMed] [Google Scholar]
  15. Matsuhisa T., Higashi K., Gotoh S., Sakamoto Y. Properties of polyriboadenylic acid from rat liver. Arch Biochem Biophys. 1970 Nov;141(1):241–246. doi: 10.1016/0003-9861(70)90128-1. [DOI] [PubMed] [Google Scholar]
  16. McConkey E. H., Hopkins J. W. Molecular weights of some HeLa ribosomal RNA's. J Mol Biol. 1969 Feb 14;39(3):545–550. doi: 10.1016/0022-2836(69)90144-2. [DOI] [PubMed] [Google Scholar]
  17. Redman C. M. Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver. J Biol Chem. 1969 Aug 25;244(16):4308–4315. [PubMed] [Google Scholar]
  18. Redman C. M., Sabatini D. D. Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc Natl Acad Sci U S A. 1966 Aug;56(2):608–615. doi: 10.1073/pnas.56.2.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosbash M., Penman S. Membrane-associated protein synthesis of mammalian cells. I. The two classes of membrane-associated ribosomes. J Mol Biol. 1971 Jul 28;59(2):227–241. doi: 10.1016/0022-2836(71)90048-9. [DOI] [PubMed] [Google Scholar]
  20. Sabatini D. D., Blobel G. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. II. Location of the polypeptides in rough microsomes. J Cell Biol. 1970 Apr;45(1):146–157. doi: 10.1083/jcb.45.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sabatini D. D., Tashiro Y., Palade G. E. On the attachment of ribosomes to microsomal membranes. J Mol Biol. 1966 Aug;19(2):503–524. doi: 10.1016/s0022-2836(66)80019-0. [DOI] [PubMed] [Google Scholar]
  22. Scott-Burden T., Hawtrey A. O. Preparation of ribosome-free membranes from rat liver microsomes by means of lithium chloride. Biochem J. 1969 Dec;115(5):1063–1069. doi: 10.1042/bj1151063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TASHIRO Y., SIEKEVITZ P. ULTRACENTRIFUGAL STUDIES ON THE DISSOCIATION OF HEPATIC RIBOSOMES. J Mol Biol. 1965 Feb;11:149–165. doi: 10.1016/s0022-2836(65)80047-x. [DOI] [PubMed] [Google Scholar]
  24. Takagi M., Ogata K. Isolation of serum albumin-synthesizing polysomes from rat liver. Biochem Biophys Res Commun. 1971 Jan 8;42(1):125–131. doi: 10.1016/0006-291x(71)90371-8. [DOI] [PubMed] [Google Scholar]
  25. Williams D. J., Gurari D., Rabin B. R. The effects of ribosomes on the activity of a membrane bound enzyme catalysing thiol-disulphide interchange. FEBS Lett. 1968 Dec;2(2):133–135. doi: 10.1016/0014-5793(68)80123-1. [DOI] [PubMed] [Google Scholar]
  26. Wilson S. H., Quincey R. V. Quantitative determination of low molecular weight ribonucleic acids in rat liver microsomes. J Biol Chem. 1969 Mar 10;244(5):1092–1096. [PubMed] [Google Scholar]
  27. Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES