Abstract
Synaptic discs are structures localized in the club ending synapses on the Mauthner cell lateral dendrite of the goldfish medulla oblongata. The synaptic discs present a hexagonal array of particles ∼8.5 nm center-to-center when observed in en face view. This lattice covers the entire surface Divalent cations are important in the stabilization of this particular hexagonal array of particles When a synaptic disc-rich fraction is treated with chelating agents (EDTA or EGTA), definite changes occur in the hexagonal lattice. First, the synaptic membranes show zones without particles interspersed with zones covered with the hexagonal array of particles Second, the synaptic discs break down and a new structure characterized by two parallel dense bands (7 nm each), separated by a 4 nm gap, is observed. The negative stain fills the gap region showing striations spaced ∼10 nm center-to-center crossing the gap, but it does not penetrate the dense bands This "double band" structure is interpreted as an edge on view of a fragment of the synaptic membrane complex. Further treatment of this fraction with a chelating agent plus 0.3% deoxycholate produces an increase in the number of double band structures. However, EDTA plus Triton X-100 (a treatment known to produce solubilization of membrane proteins) never shows such double band structure An ordered material was observed associated with the cytoplasmic leaflets of the double bands This material consists of rows of beads ∼4 nm in diameter and spaced at intervals of ∼7 nm. Each of these beads is joined to the band by a thin stalk.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benedetti E. L., Emmelot P. Electron microscopic observations on negatively stained plasma membranes isolated from rat liver. J Cell Biol. 1965 Jul;26(1):299–305. doi: 10.1083/jcb.26.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. V., Nakajima Y., Pappas G. D. Physiology and ultrastructure of electrotonic junctions. I. Supramedullary neurons. J Neurophysiol. 1967 Mar;30(2):161–179. doi: 10.1152/jn.1967.30.2.161. [DOI] [PubMed] [Google Scholar]
- Bennett M. V., Pappas G. D., Aljure E., Nakajima Y. Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J Neurophysiol. 1967 Mar;30(2):180–208. doi: 10.1152/jn.1967.30.2.180. [DOI] [PubMed] [Google Scholar]
- Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullivant S., Loewenstein W. R. Structure of coupled and uncoupled cell junctions. J Cell Biol. 1968 Jun;37(3):621–632. doi: 10.1083/jcb.37.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalcroft J. P., Bullivant S. An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J Cell Biol. 1970 Oct;47(1):49–60. doi: 10.1083/jcb.47.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FURSHPAN E. J., POTTER D. D. Transmission at the giant motor synapses of the crayfish. J Physiol. 1959 Mar 3;145(2):289–325. doi: 10.1113/jphysiol.1959.sp006143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hand A. R., Gobel S. The structural organization of the septate and gap junctions of Hydra. J Cell Biol. 1972 Feb;52(2):397–408. doi: 10.1083/jcb.52.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martínez-Palomo A., Mendez R. Presence of gap junctions between cardiac cells in the heart of nonmammalian species. J Ultrastruct Res. 1971 Dec;37(5):592–600. doi: 10.1016/s0022-5320(71)80027-8. [DOI] [PubMed] [Google Scholar]
- McNutt N. S., Weinstein R. S. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol. 1970 Dec;47(3):666–688. doi: 10.1083/jcb.47.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moor H. Use of freeze-etching in the study of biological ultrastructure. Int Rev Exp Pathol. 1966;5:179–216. [PubMed] [Google Scholar]
- ROBERTSON J. D. THE OCCURRENCE OF A SUBUNIT PATTERN IN THE UNIT MEMBRANES OF CLUB ENDINGS IN MAUTHNER CELL SYNAPSES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:201–221. doi: 10.1083/jcb.19.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vergara J., Longley W., Robertson J. D. A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J Mol Biol. 1969 Dec 28;46(3):593–596. doi: 10.1016/0022-2836(69)90200-9. [DOI] [PubMed] [Google Scholar]