Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Jul 1;54(1):30–38. doi: 10.1083/jcb.54.1.30

DEPLETION OF VESICLES FROM FROG NEUROMUSCULAR JUNCTIONS BY PROLONGED TETANIC STIMULATION

B Ceccarelli 1, W P Hurlbut 1, A Mauro 1
PMCID: PMC2108853  PMID: 4338962

Abstract

Curarized cutaneous pectoris nerve muscle preparations from frogs were subjected to prolonged indirect stimulation at 2/sec while recording from end plate regions. At the ends of the periods of stimulation, the curare was removed and the preparations were fixed for electron microscopy or treated with black widow spider venom to determine the degree to which their stores of transmitter had been depleted. After 6–8 hr of stimulation the nerve terminals were almost completely depleted of their stores of transmitter and of their population of vesicles. Most of the transmitter release occurred during the first 4 hr of stimulation, and after this time most (about 80%) of the fibers were depleted of about 80% of their transmitter. The organization of the nerve terminals in 4-hr preparations appeared normal and the terminals still contained many vesicles. When peroxidase was present in the bathing medium, terminals from stimulated preparations showed many vesicles that contained peroxidase, whereas the rested control preparations showed few such vesicles The fact that after 4 hr the total number of vesicles is not markedly changed while a large fraction (up to 45%) contained peroxidase suggests that in our experiments vesicles were continuously fusing with and reforming from the axolemma.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRKS R., HUXLEY H. E., KATZ B. The fine structure of the neuromuscular junction of the frog. J Physiol. 1960 Jan;150:134–144. doi: 10.1113/jphysiol.1960.sp006378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BROOKS V. B., THIES R. E. Reduction of quantum content during neuromuscular transmission. J Physiol. 1962 Jul;162:298–310. doi: 10.1113/jphysiol.1962.sp006934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bittner G. D., Kennedy D. Quantitative aspects of transmitter release. J Cell Biol. 1970 Dec;47(3):585–592. doi: 10.1083/jcb.47.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capek R., Esplin D. W., Salehmoghaddam S. Rates of transmitter turnover at the frog neuromuscular junction estimated by electrophysiological techniques. J Neurophysiol. 1971 Sep;34(5):831–841. doi: 10.1152/jn.1971.34.5.831. [DOI] [PubMed] [Google Scholar]
  5. ELMQVIST D., HOFMANN W. W., KUGELBERG J., QUASTEL D. M. AN ELECTROPHYSIOLOGICAL INVESTIGATION OF NEUROMUSCULAR TRANSMISSION IN MYASTHENIA GRAVIS. J Physiol. 1964 Nov;174:417–434. doi: 10.1113/jphysiol.1964.sp007495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holtzman E., Freeman A. R., Kashner L. A. Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions. Science. 1971 Aug 20;173(3998):733–736. doi: 10.1126/science.173.3998.733. [DOI] [PubMed] [Google Scholar]
  7. Hubbard J. I., Kwanbunbumpen S. Evidence for the vesicle hypothesis. J Physiol. 1968 Feb;194(2):407–420. doi: 10.1113/jphysiol.1968.sp008415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Longenecker H. E., Jr, Hurlbut W. P., Mauro A., Clark A. W. Effects of black widow spider venom on the frog neuromuscular junction. Effects on end-plate potential, miniature end-plate potential and nerve terminal spike. Nature. 1970 Feb 21;225(5234):701–703. doi: 10.1038/225701a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES