Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Aug 1;54(2):325–345. doi: 10.1083/jcb.54.2.325

DIRECT COUNTING AND SIZING OF MITOCHONDRIA IN SOLUTION

Adrian R L Gear 1, Jana M Bednarek 1
PMCID: PMC2108871  PMID: 4339279

Abstract

Resistive particle counting has been developed for the accurate sizing and counting of mitochondria in solution. The normal detection limit with a 30 µ aperture is 0.48 µ diameter, or 0.056 µ3 particle volume The mean volume of rat liver mitochondria was 0.42 µ3 or 0.93 µ in diameter. The average value for numbers of particles per milligram of mitochondrial protein was 4.3 x 103, and per gram of rat liver was about 11 x 1010. These values compare satisfactorily with those derived by light microscopy and electron microscopy. The mean volume for mitochondria from rat heart was 0 60 µ3 and from rat kidney cortex, 0.23 µ3. These values agree within 15% of those determined by electron microscopy of whole tissue. Mitochondrial fragility and contaminating subcellular organelles were shown to have little influence on the experimentally determined size distributions The technique may be applied to rapid swelling studies, as well as to estimations of the number and size of mitochondria from animals under different conditions such as liver regeneration and hormonal, pathological, or drug-induced states Mitochondrial DNA, RNA, cytochrome c-oxidase, cytochrome (a ÷ a 3), and iron were nearly constant per particle over large differences in particle size. Such data may be particularly valuable for biogenesis studies and support the hypothesis that the net amount per particle of certain mitochondrial constituents remains constant during mitochondrial growth and enlargement

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLARD C., DE LAMIRANDE G., CANTERO A. Mitochondrial population of mammalian cells. II. Variation in the mitochondrial population of the average rat liver cell during regeneration; use of the mitochondrion as a unit of measurement. Cancer Res. 1952 Aug;12(8):580–583. [PubMed] [Google Scholar]
  2. ALLARD C., MATHIEU R., DE LAMIRANDE G., CANTERO A. Mitochondrial population in mammalian cells. I. Description of a counting technic and preliminary results on rat liver in different physiological and pathological conditions. Cancer Res. 1952 Jun;12(6):407–412. [PubMed] [Google Scholar]
  3. Ashwell M., Work T. S. The biogenesis of mitochondria. Annu Rev Biochem. 1970;39:251–290. doi: 10.1146/annurev.bi.39.070170.001343. [DOI] [PubMed] [Google Scholar]
  4. BAHR G. F., ZEITLER E. Study of mitochondria in rat liver. Quantitative electron microscopy. J Cell Biol. 1962 Dec;15:489–501. doi: 10.1083/jcb.15.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  6. Bartley W., Enser M. B. The swelling and contraction of isolated rat-liver mitochondria. Biochem J. 1964 Nov;93(2):322–330. doi: 10.1042/bj0930322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burch R. E., Curran G. L. Hepatic acetoacetyl-CoA deacylase activity in rats fed ethyl chlorophenoxyisobutyrate (CPIB). J Lipid Res. 1969 Nov;10(6):668–673. [PubMed] [Google Scholar]
  8. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DE DUVE C., WATTIAUX R., BAUDHUIN P. Distribution of enzymes between subcellular fractions in animal tissues. Adv Enzymol Relat Subj Biochem. 1962;24:291–358. doi: 10.1002/9780470124888.ch6. [DOI] [PubMed] [Google Scholar]
  10. GEAR A. R. SOME FEATURES OF MITOCHONDRIA AND FLUFFY LAYER IN REGENERATING RAT LIVER. Biochem J. 1965 Apr;95:118–137. doi: 10.1042/bj0950118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GEBICKI J. M., HUNTER F. E., Jr DETERMINATION OF SWELLING AND DISINTEGRATION OF MITOCHONDRIA WITH AN ELECTRONIC PARTICLE COUNTER. J Biol Chem. 1964 Feb;239:631–639. [PubMed] [Google Scholar]
  12. Gear A. R., Lehninger A. L. Rapid, respiration-independent binding of alkali metal cations by rat liver mitochondria. J Biol Chem. 1968 Jul 25;243(14):3953–3962. [PubMed] [Google Scholar]
  13. Glas U., Bahr G. F. Quantitative study of mitochondria in rat liver. Dry mass, wet mass, volume, and concentration of solids. J Cell Biol. 1966 Jun;29(3):507–523. doi: 10.1083/jcb.29.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hackenbrock C. R., Rehn T. G., Weinbach E. C., Lemasters J. J. Oxidative phosphorylation and ultrastructural transformation in mitochondria in the intact ascites tumor cell. J Cell Biol. 1971 Oct;51(1):123–137. doi: 10.1083/jcb.51.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jakovcic S., Haddock J., Getz G. S., Rabinowitz M., Swift H. Mitochondrial development in liver of foetal and newborn rats. Biochem J. 1971 Jan;121(2):341–347. doi: 10.1042/bj1210341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LUCK D. J., REICH E. DNA IN MITOCHONDRIA OF NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1964 Oct;52:931–938. doi: 10.1073/pnas.52.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NEUBERT D., FOSTER G. V., LEHNINGER A. L. Effect of temperature on uptake and extrusion of water by isolated rat-liver mitochondria. Biochim Biophys Acta. 1962 Jul 16;60:492–498. doi: 10.1016/0006-3002(62)90868-5. [DOI] [PubMed] [Google Scholar]
  18. Packer L., Deamer D. W., Crofts A. R. Conformational changes in chloroplasts. Brookhaven Symp Biol. 1966;19:281–302. [PubMed] [Google Scholar]
  19. Packer L., Wrigglesworth J. M., Fortes P. A., Pressman B. C. Expansion of the inner membrane compartment and its relation to mitochondrial volume and ion transport. J Cell Biol. 1968 Nov;39(2):382–391. doi: 10.1083/jcb.39.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pollak J. K., Woog M. Changes in the proportions of two mitochondrial populations during the development of embryonic chick liver. Biochem J. 1971 Jul;123(3):347–353. doi: 10.1042/bj1230347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stoner C. D., Sirak H. D. Osmotically-induced alterations in volume and ultrastructure of mitochondria isolated from rat liver and bovine heart. J Cell Biol. 1969 Dec;43(3):521–538. doi: 10.1083/jcb.43.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WILLIAMS J. N., Jr A METHOD FOR THE SIMULTANEOUS QUANTITATIVE ESTIMATION OF CYTOCHROMES A, B, C1, AND C IN MITOCHONDRIA. Arch Biochem Biophys. 1964 Sep;107:537–543. doi: 10.1016/0003-9861(64)90313-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES