Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Aug 1;54(2):225–231. doi: 10.1083/jcb.54.2.225

THE BIOSYNTHESIS AND CONTENT OF GAMMA-AMINOBUTYRIC ACID IN THE GOLDFISH RETINA

Dominic M K Lam 1
PMCID: PMC2108876  PMID: 4339278

Abstract

Goldfish retinas incubated with L-glutamate-14C (UL) were found to synthesize γ-aminobutyric acid-14C (GABA-14C) The accumulation of newly synthesized GABA was enhanced by physiological stimulation of the retina with flashing light; and this increase was directly proportional to the logarithm of the light intensity. The total GABA content was also higher in light-stimulated than in dark-adapted retinas, although the glutamate content remained unchanged No differences were found in the cell-free activities of glutamate decarboxylase (EC 4 1.1 15) and GABA-glutamate transaminase (EC 2.6.1.19) extracted from light-stimulated and dark-adapted retinas. These findings, together with other physiological and morphologcal evidence, suggest that GABA plays a functional role in synaptic transmission in the goldfish retina

Full Text

The Full Text of this article is available as a PDF (605.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames A., 3rd, Pollen D. A. Neurotransmission in central nervous tissue: a study of isolated rabbit retina. J Neurophysiol. 1969 May;32(3):424–442. doi: 10.1152/jn.1969.32.3.424. [DOI] [PubMed] [Google Scholar]
  2. BARLOW H. B., FITZHUGH R., KUFFLER S. W. Change of organization in the receptive fields of the cat's retina during dark adaptation. J Physiol. 1957 Aug 6;137(3):338–354. doi: 10.1113/jphysiol.1957.sp005817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Graham L. T., Jr, Baxter C. F., Lolley R. N. In vivo influence of light or darkness on the GABA system in the retina of the frog (Rana pipiens). Brain Res. 1970 Jun 15;20(3):379–388. doi: 10.1016/0006-8993(70)90168-x. [DOI] [PubMed] [Google Scholar]
  4. Hildebrand J. G., Barker D. L., Herbert E., Kravitz E. A. Screening for neurotransmitters: a rapid radiochemical procedure. J Neurobiol. 1971;2(3):231–246. doi: 10.1002/neu.480020305. [DOI] [PubMed] [Google Scholar]
  5. Kaneko A. Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol. 1970 May;207(3):623–633. doi: 10.1113/jphysiol.1970.sp009084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kramer S. G. Dopamine: A retinal neurotransmitter. I. Retinal uptake, storage, and light-stimulated release of H3-dopamine in vivo. Invest Ophthalmol. 1971 Jun;10(6):438–452. [PubMed] [Google Scholar]
  7. Kravitz E. A., Molinoff P. B., Hall Z. W. A comparison of the enzymes and substrates of gamma-aminobutyric acid metabolism in lobster excitatory and inhibitory axons. Proc Natl Acad Sci U S A. 1965 Sep;54(3):778–782. doi: 10.1073/pnas.54.3.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kuriyama K., Roberts E., Rubinstein M. K. Elevation of gamma-aminobutyric acid in brain with amino-oxyacetic acid and susceptibility to convulsive seizures in mice: a quantitative re-evaluation. Biochem Pharmacol. 1966 Mar;15(3):221–236. doi: 10.1016/0006-2952(66)90293-0. [DOI] [PubMed] [Google Scholar]
  9. Kuriyama K., Sisken B., Haber B., Roberts E. The gamma-aminobutyric acid system in rabbit retina. Brain Res. 1968 Jun;9(1):165–168. doi: 10.1016/0006-8993(68)90269-2. [DOI] [PubMed] [Google Scholar]
  10. Lam D. M., Steinman L. The uptake of ( - 3 H) aminobutyric acid in the goldfish retina. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2777–2781. doi: 10.1073/pnas.68.11.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Molinoff P. B., Kravitz E. A. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system--glutamic decarboxylase. J Neurochem. 1968 May;15(5):391–409. doi: 10.1111/j.1471-4159.1968.tb11626.x. [DOI] [PubMed] [Google Scholar]
  12. Naka K. I., Nye P. W. Role of horizontal cells in organization of the catfish retinal receptive field. J Neurophysiol. 1971 Sep;34(5):785–801. doi: 10.1152/jn.1971.34.5.785. [DOI] [PubMed] [Google Scholar]
  13. Neal M. J., Iversen L. L. Autoradiographic localization of 3 H-GABA in rat retina. Nat New Biol. 1972 Feb 16;235(59):217–218. doi: 10.1038/newbio235217a0. [DOI] [PubMed] [Google Scholar]
  14. Otsuka M., Obata K., Miyata Y., Tanaka Y. Measurement of gamma-aminobutyric acid in isolated nerve cells of cat central nervous system. J Neurochem. 1971 Feb;18(2):287–295. doi: 10.1111/j.1471-4159.1971.tb00567.x. [DOI] [PubMed] [Google Scholar]
  15. SCOTT E. M., JAKOBY W. B. Soluble gamma-aminobutyric-glutamic transaminase from Pseudomonas fluorescens. J Biol Chem. 1959 Apr;234(4):932–936. [PubMed] [Google Scholar]
  16. Werblin F. S., Dowling J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969 May;32(3):339–355. doi: 10.1152/jn.1969.32.3.339. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES