Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Aug 1;54(2):246–265. doi: 10.1083/jcb.54.2.246

THE THREE-DIMENSIONAL STRUCTURE OF THE BASAL BODY FROM THE RHESUS MONKEY OVIDUCT

Richard G W Anderson 1
PMCID: PMC2108883  PMID: 5064817

Abstract

The structure of the oviduct basal body has been reconstructed from serial, oblique, and tangential sections This composite information has been used to construct a three-dimensional scale model of the organelle The walls are composed of nine equally spaced sets of three tubules, which run from base to apex pitched to the left at a 10°–15° angle to the longitudinal axis. The transverse axis of each triplet set at its basal end intersects a tangent to the lumenal circumference of the basal body at a 40° angle (triplet angle). As the triplet set transverses from base to apex, it twists toward the lumen on the longitudinal axis of the inner A tubule; therefore, the triplet angle is 10° at the basal body-cilium junction. Strands of fibrous material extend from the basal end of each triplet to form a striated rootlet. A pyramidal basal foot projects at right angles from the midregion of the basal body. In the apex, a 175 mµ long trapezoidal sheet is attached to each triplet set. The smaller of the two parallel sides is attached to all three tubules while the longitudinal edge (one of the equidistant anti-parallel sides) is attached to the C tubule. The sheet faces counterclockwise (apex to base view) and gradually unfolds from base to apex; the outside corner merges with the cell membrane.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol. 1969 Mar;40(3):716–733. doi: 10.1083/jcb.40.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. G., Brenner R. M. Accurate placement of ultrathin sections on grids; control by sol-gel phases of a gelatin flotation fluid. Stain Technol. 1971 Jan;46(1):1–6. doi: 10.3109/10520297109067809. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. G., Brenner R. M. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct. J Cell Biol. 1971 Jul;50(1):10–34. doi: 10.1083/jcb.50.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dippell R. V. The development of basal bodies in paramecium. Proc Natl Acad Sci U S A. 1968 Oct;61(2):461–468. doi: 10.1073/pnas.61.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doolin P. F., Birge W. J. Ultrastructural organization of cilia and basal bodies of the epithelium of the choroid plexus in the chick embryo. J Cell Biol. 1966 May;29(2):333–345. doi: 10.1083/jcb.29.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frisch D. Ultrastructure of mouse olfactory mucosa. Am J Anat. 1967 Jul;121(1):87–120. doi: 10.1002/aja.1001210107. [DOI] [PubMed] [Google Scholar]
  7. GIBBONS I. R. Structural asymmetry in cilia and flagella. Nature. 1961 Jun 17;190:1128–1129. doi: 10.1038/1901128a0. [DOI] [PubMed] [Google Scholar]
  8. Gliddon R. Ciliary organelles and associated fibre systems in Euplotes eurystomus (Ciliata, hypotrichida). I. Fine structure. J Cell Sci. 1966 Dec;1(4):439–448. doi: 10.1242/jcs.1.4.439. [DOI] [PubMed] [Google Scholar]
  9. Lin H., Chen I. Development of the ciliary complex and microtubules in the cells of rat subcommissural organ. Z Zellforsch Mikrosk Anat. 1969;96(2):186–205. doi: 10.1007/BF00338766. [DOI] [PubMed] [Google Scholar]
  10. Moser J. W., Kreitner G. L. Centrosome structure in Anthoceros laevis and Marchantia polymorpha. J Cell Biol. 1970 Feb;44(2):454–458. doi: 10.1083/jcb.44.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. O'Hara P. T. Spiral tilt of triplet fibers in human leukocyte centrioles. J Ultrastruct Res. 1970 Apr;31(1):195–198. doi: 10.1016/s0022-5320(70)90154-1. [DOI] [PubMed] [Google Scholar]
  12. OLSSON R. The relationship between ciliary rootlets and other cell structures. J Cell Biol. 1962 Dec;15:596–599. doi: 10.1083/jcb.15.3.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Phillips D. M. Insect sperm: their structure and morphogenesis. J Cell Biol. 1970 Feb;44(2):243–277. doi: 10.1083/jcb.44.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SZOLLOSI D. THE STRUCTURE AND FUNCTION OF CENTRIOLES AND THEIR SATELLITES IN THE JELLYFISH PHIALIDIUM GREGARIUM. J Cell Biol. 1964 Jun;21:465–479. doi: 10.1083/jcb.21.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sorokin S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci. 1968 Jun;3(2):207–230. doi: 10.1242/jcs.3.2.207. [DOI] [PubMed] [Google Scholar]
  16. Turner F. R. An ultrastructural study of plant spermatogenesis. Spermatogenesis in Nitella. J Cell Biol. 1968 May;37(2):370–393. doi: 10.1083/jcb.37.2.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wolfe J. Structural analysis of basal bodies of the isolated oral apparatus of Tetrahymena pyriformis. J Cell Sci. 1970 May;6(3):679–700. doi: 10.1242/jcs.6.3.679. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES