Abstract
It is known that there are 100 Å-wide circular structures associated with the erythrocyte membrane in immune lysis. To determine whether these structures were functional holes extending through the membrane, freeze-etch electron microscopy was carried out. Sheep erythrocytes incubated with either rabbit complement or rabbit antibody (anti-sheep erythrocyte antibody) did not hemolyze and did not reveal any abnormalities in freeze-etch or negative-stain electron microscopy. Erythrocytes incubated with both complement and antibody revealed rings on the extracellular surface (etch face) of the cell membrane. Allowing for the 30 Å-thick Pt/C replica, the dimensions of the surface rings were similar to those seen by negative staining. The ring's central depression was level with the plane of the membrane; some rings were closed circles, others were crescent shaped. The cleavage face of the extracellular leaflet revealed globule aggregates, each aggregate appearing to be composed of about four fused globules. The cleavage face of the cytoplasmic leaflet was normal. When immune lysis was carried out in the presence of ferritin, ferritin was subsequently detected in all lysed erythrocytes. If ferritin was added after immune lysis was complete, only 15% of the cells were permeated by ferritin, indicating that transient openings exist in the cell membrane during immune lysis. No abnormal structures were detected when C6-deficient rabbit serum was used as a source of complement. It is concluded that antibody and complement produce surface rings, prelytic leakage of K+, colloid osmotic swelling, membrane disruption, and membrane resealing; the surface rings persist after these events.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alving C. R., Kinsky S. C., Haxby J. A., Kinsky C. B. Antibody binding and complement fixation by a liposomal model membrane. Biochemistry. 1969 Apr;8(4):1582–1587. doi: 10.1021/bi00832a038. [DOI] [PubMed] [Google Scholar]
- BORSOS T., DOURMASHKIN R. R., HUMPHREY J. H. LESIONS IN ERYTHROCYTE MEMBRANES CAUSED BY IMMUNE HAEMOLYSIS. Nature. 1964 Apr 18;202:251–252. doi: 10.1038/202251a0. [DOI] [PubMed] [Google Scholar]
- Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branton D. Freeze-etching studies of membrane structure. Philos Trans R Soc Lond B Biol Sci. 1971 May 27;261(837):133–138. doi: 10.1098/rstb.1971.0043. [DOI] [PubMed] [Google Scholar]
- Bullivant S., Ames A., 3rd A simple freeze-fracture replication method for electron microscopy. J Cell Biol. 1966 Jun;29(3):435–447. doi: 10.1083/jcb.29.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies H. G., Marsden N. V., Ostling S. G., Zade-Oppen A. M. The effect of some neutral macromolecules on the pattern of hypotonic hemolysis. Acta Physiol Scand. 1968 Dec;74(4):577–593. doi: 10.1111/j.1748-1716.1968.tb04269.x. [DOI] [PubMed] [Google Scholar]
- Deamer D. W., Branton D. Fracture planes in an ice-bilayer model membrane system. Science. 1967 Nov 3;158(3801):655–657. doi: 10.1126/science.158.3801.655. [DOI] [PubMed] [Google Scholar]
- Dudman W. F. Precipitation of tobacco mosaic virus by macromolecules: a method for estimating molecular volumes. Nature. 1966 Sep 3;211(5053):1049–passim. doi: 10.1038/2111049a0. [DOI] [PubMed] [Google Scholar]
- Haxby J. A., Götze O., Müller-Eberhard H. J., Kinsky S. C. Release of trapped marker from liposomes by the action of purified complement components. Proc Natl Acad Sci U S A. 1969 Sep;64(1):290–295. doi: 10.1073/pnas.64.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haxby J. A., Kinsky C. B., Kinsky S. C. Immune response of a liposomal model membrane. Proc Natl Acad Sci U S A. 1968 Sep;61(1):300–307. doi: 10.1073/pnas.61.1.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hesketh T. R., Dourmashkin R. R., Payne S. N., Humphrey J. H., Lachmann P. J. Lesions due to complement in lipid membranes. Nature. 1971 Oct 29;233(5322):620–623. doi: 10.1038/233620a0. [DOI] [PubMed] [Google Scholar]
- Hingson D. J., Massengill R. K., Mayer M. M. The kinetics of release of 86rubidium and hemoglobin from erythrocytes damaged by antibody and complement. Immunochemistry. 1969 Mar;6(2):295–307. doi: 10.1016/0019-2791(69)90166-9. [DOI] [PubMed] [Google Scholar]
- Humphrey J. H., Dourmashkin R. R. The lesions in cell membranes caused by complement. Adv Immunol. 1969;11:75–115. doi: 10.1016/s0065-2776(08)60478-2. [DOI] [PubMed] [Google Scholar]
- Inoue K., Kataoka T., Kinsky S. C. Comparative responses of liposomes prepared with different ceramide antigens to antibody and complement. Biochemistry. 1971 Jun 22;10(13):2574–2581. doi: 10.1021/bi00789a025. [DOI] [PubMed] [Google Scholar]
- Kinsky S. C. Antibody-complement interaction with lipid model membranes. Biochim Biophys Acta. 1972 Feb 14;265(1):1–23. doi: 10.1016/0304-4157(72)90017-2. [DOI] [PubMed] [Google Scholar]
- Kinsky S. C., Bonsen P. P., Kinsky C. B., Van Deenen L. L., Rosenthal A. F. Preparation of immunologically responsive liposomes with phosphonyl and phosphinyl analogs of lecithin. Biochim Biophys Acta. 1971 Jun 1;233(3):815–819. doi: 10.1016/0005-2736(71)90183-0. [DOI] [PubMed] [Google Scholar]
- Kinsky S. C., Haxby J. A., Zopf D. A., Alving C. R., Kinsky C. B. Complement-dependent damage to liposomes prepared from pure lipids and Forssman hapten. Biochemistry. 1969 Oct;8(10):4149–4158. doi: 10.1021/bi00838a036. [DOI] [PubMed] [Google Scholar]
- Knudson K. C., Bing D. H., Kater L. Quantitative measurement of guinea pig complement with liposomes. J Immunol. 1971 Jan;106(1):258–265. [PubMed] [Google Scholar]
- Kolb W. P., Haxby J. A., Arroyave C. M., Müller-Eberhard H. J. Molecular analysis of the membrane attack mechanism of complement. J Exp Med. 1972 Mar 1;135(3):549–566. doi: 10.1084/jem.135.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAURENT T. C., OGSTON A. G. THE INTERACTION BETWEEN POLYSACCHARIDES AND OTHER MACROMOLECULES. 4. THE OSMOTIC PRESSURE OF MIXTURES OF SERUM ALBUMIN AND HYALURONIC ACID. Biochem J. 1963 Nov;89:249–253. doi: 10.1042/bj0890249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lachmann P. J., Munn E. A., Weissmanng Complement-mediated lysis of liposomes produced by the reactive lysis procedure. Immunology. 1970 Dec;19(6):983–986. [PMC free article] [PubMed] [Google Scholar]
- MacLennan D. H., Seeman P., Iles G. H., Yip C. C. Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum. J Biol Chem. 1971 Apr 25;246(8):2702–2710. [PubMed] [Google Scholar]
- Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosse W. F., Dourmashkin R., Humphrey J. H. Immune lysis of normal human and paroxysmal nocturnal hemoglobinuria (PNH) red blood cells. 3. The membrane defects caused by complement lysis. J Exp Med. 1966 Jun 1;123(6):969–984. doi: 10.1084/jem.123.6.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosse W. F., Lauf P. K. Effects of immune reactions on the red cell membrane. Semin Hematol. 1970 Jul;7(3):323–340. [PubMed] [Google Scholar]
- Roth S., Seeman P. Anesthetics expand erythrocyte membranes without causing loss of K + . Biochim Biophys Acta. 1972 Jan 17;255(1):190–198. doi: 10.1016/0005-2736(72)90021-1. [DOI] [PubMed] [Google Scholar]
- SEARS D. A., WEED R. I., SWISHER S. N. DIFFERENCES IN THE MECHANISM OF IN VITRO IMMUNE HEMOLYSIS RELATED TO ANTIBODY SPECIFICITY. J Clin Invest. 1964 May;43:975–985. doi: 10.1172/JCI104983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeman P., Cheng D., Iles G. H. Structure of membrane holes in osmotic and saponin hemolysis. J Cell Biol. 1973 Feb;56(2):519–527. doi: 10.1083/jcb.56.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeman P., Sauks T., Argent W., Kwant W. O. The effect of membrane-strain rate and of temperature on erythrocyte fragility and critical hemolytic volume. Biochim Biophys Acta. 1969;183(3):476–489. doi: 10.1016/0005-2736(69)90162-x. [DOI] [PubMed] [Google Scholar]
- Tillack T. W., Marchesi V. T. Demonstration of the outer surface of freeze-etched red blood cell membranes. J Cell Biol. 1970 Jun;45(3):649–653. doi: 10.1083/jcb.45.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein R. S., Bullivant S. The application of freeze-cleaving technics to studies on red blood cell fine structure. Blood. 1967 May;29(5):780–789. [PubMed] [Google Scholar]
- Weinstein R. S., McNutt N. S. Ultrastructure of red cell membranes. Semin Hematol. 1970 Jul;7(3):259–274. [PubMed] [Google Scholar]
- Wrigglesworth J. M., Packer L., Branton D. Organization of mitochondrial structure as revealed by freeze-etching. Biochim Biophys Acta. 1970;205(2):125–135. doi: 10.1016/0005-2728(70)90243-4. [DOI] [PubMed] [Google Scholar]
