Abstract
An electron microscope investigation of the interface between the myonemes of Vorticella convallaria and their associated endoplasmic reticulum (ER) has revealed structures of a complex morphology linking these two organelles. These structures are named "linkage complexes". Each complex contains a spindle-shaped midpiece which lies in a groove of the ER membrane. Microfilaments splay out from the tips of the midpiece and may come in contact with the inner alveolar sac membrane. Three to six raillike structures lie on each side of the midpiece and parallel it. The ER membrane appears to pass through the sides of the rails. In the lumen of the ER these rails are associated with a meshwork of filaments. A cradle of five rods lies within the groove under the midpiece. The ER membrane also passes through these rods which contact the same meshwork. In the scopular region and in the stalk the microfilaments from the midpiece form a bundle which passes into the lumen of modified basal bodies. These basal bodies are connected to the alveolar sac which, in the stalk, passes as a flattened tube along its length. The parts of the dissociated linkage complex are scattered throughout the spasmoneme of the stalk along membranes of the intraspasmonemal tubules. Thus, both stalk and body contractile bundles have linkage complexes that link their associated membrane systems to the microfibrils and, in turn, connect this membrane-microfibrillar interface to the pellicular membranes. The arrangement of the linkage complex suggests an involvement in the control of the transport of calcium ions between ER and microfibrils, and possibly the transfer of a message from the surface membranes to the sites of calcium release to trigger myonemal contraction.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. D. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol. 1969 Mar;40(3):716–733. doi: 10.1083/jcb.40.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amos W. B. Structure and coiling of the stalk in the peritrich ciliates Vorticella and Carchesium. J Cell Sci. 1972 Jan;10(1):95–122. doi: 10.1242/jcs.10.1.95. [DOI] [PubMed] [Google Scholar]
- Carsten M. E. Role of calcium binding by sarcoplasmic reticulum in the contraction and relaxation of uterine smooth muscle. J Gen Physiol. 1969 Apr;53(4):414–426. doi: 10.1085/jgp.53.4.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edge M. B., Walker S. M. Evidence for a structural relationship between sarcoplasmic reticulum and Z lines in dog papillary muscle. Anat Rec. 1970 Jan;166(1):51–65. doi: 10.1002/ar.1091660105. [DOI] [PubMed] [Google Scholar]
- Ettienne E. M. Control of contractility in Spirostomum by dissociated calcium ions. J Gen Physiol. 1970 Aug;56(2):168–179. doi: 10.1085/jgp.56.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ettienne E. Subcellular localization of calcium repositories in plasmodia of the acellular slime mold Physarum polycephalum. J Cell Biol. 1972 Jul;54(1):179–184. doi: 10.1083/jcb.54.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAURE-FREMEIT E., GAUCHERY M., ROUILLER C. Les structures myoïdes chez les Ciliés; étude au microscope électronique. Arch Anat Microsc Morphol Exp. 1956 Apr-Jun;45(2):139–161. [PubMed] [Google Scholar]
- FRANZINI-ARMSTRONG C., PORTER K. R. SARCOLEMMAL INVAGINATIONS CONSTITUTING THE T SYSTEM IN FISH MUSCLE FIBERS. J Cell Biol. 1964 Sep;22:675–696. doi: 10.1083/jcb.22.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzpatrick D. F., Landon E. J., Debbas G., Hurwitz L. A calcium pump in vascular smooth muscle. Science. 1972 Apr 21;176(4032):305–306. doi: 10.1126/science.176.4032.305. [DOI] [PubMed] [Google Scholar]
- Franke W. W., Kartenbeck J., Zentgraf H., Scheer U., Falk H. Membrane-to-membrane cross-bridges. A means to orientation and interaction of membrane faces. J Cell Biol. 1971 Dec;51(3):881–888. doi: 10.1083/jcb.51.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOFFMANN-BERLING H. Der Mechanismus eines neuen, von der Muskelkontraktion verschiedenen Kontraktionszyklus. Biochim Biophys Acta. 1958 Feb;27(2):247–255. doi: 10.1016/0006-3002(58)90331-7. [DOI] [PubMed] [Google Scholar]
- Heumann H. G. Calciumakkumulierende Strukturen in einem glatten Wirbellosenmuskel. Protoplasma. 1969;67(1):111–115. doi: 10.1007/BF01256771. [DOI] [PubMed] [Google Scholar]
- Kelly D. E. The fine structure of skeletal muscle triad junctions. J Ultrastruct Res. 1969 Oct;29(1):37–49. doi: 10.1016/s0022-5320(69)80054-7. [DOI] [PubMed] [Google Scholar]
- Lom J., Corliss J. O. Observations on the fine structure of two species of the peritrich ciliate genus Scyphidia and on their mode of attachment to their host. Trans Am Microsc Soc. 1968 Oct;87(4):493–509. [PubMed] [Google Scholar]
- MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER K. R. The sarcoplasmic reticulum in muscle cells of Amblystoma larvae. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):163–170. doi: 10.1083/jcb.2.4.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page S. Structure of the sarcoplasmic reticulum in vertebrate muscle. Br Med Bull. 1968 May;24(2):170–173. doi: 10.1093/oxfordjournals.bmb.a070621. [DOI] [PubMed] [Google Scholar]
- Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
- REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rahat M., Parnas I., Nevo A. C. Extensibility and tensile strength of the stalk "muscle" of Carchesium sp. Exp Cell Res. 1969 Jan;54(1):69–76. doi: 10.1016/0014-4827(69)90294-8. [DOI] [PubMed] [Google Scholar]
- SOTELO J. R., TRUJILLO-CENOZ O. The fine structure of an elementary contractile system. J Biophys Biochem Cytol. 1959 Aug;6(1):126–128. doi: 10.1083/jcb.6.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandow A. Skeletal muscle. Annu Rev Physiol. 1970;32:87–138. doi: 10.1146/annurev.ph.32.030170.000511. [DOI] [PubMed] [Google Scholar]
- WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker S. M., Schrodt G. R., Bingham M. Electron microscope study of the sarcoplasmic reticulum at the Z line level in skeletal muscle fibers of fetal and newborn rats. J Cell Biol. 1968 Nov;39(2):469–475. doi: 10.1083/jcb.39.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker S. M., Schrodt G. R., Edge M. B. The density attached to the inside surface of the apposed sarcoplasmic reticular membrane in vertebrate cardiac and skeletal muscle fibres. J Anat. 1971 Feb;108(Pt 2):217–230. [PMC free article] [PubMed] [Google Scholar]
- Walker S. M., Schrodt G. R. T system connexions with the sarcolemma and sarcoplasmic reticulum. Nature. 1966 Aug 27;211(5052):935–938. doi: 10.1038/211935a0. [DOI] [PubMed] [Google Scholar]
- Weis-Fogh T., Amos W. B. Evidence for a new mechanism of cell motility. Nature. 1972 Apr 7;236(5345):301–304. doi: 10.1038/236301a0. [DOI] [PubMed] [Google Scholar]