Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Feb 1;56(2):519–527. doi: 10.1083/jcb.56.2.519

STRUCTURE OF MEMBRANE HOLES IN OSMOTIC AND SAPONIN HEMOLYSIS

P Seeman 1, D Cheng 1, G H Iles 1
PMCID: PMC2108893  PMID: 4566525

Abstract

Serial section electron microscopy of hemolysing erythrocytes (fixed at 12 s after the onset of osmotic hemolysis) revealed long slits and holes in the membrane, extending to around 1 µm in length. Many but not all of the slits and holes (about 100–1000 Å wide) were confluent with one another. Ferritin and colloidal gold (added after fixation) only permeated those cells containing membrane defects. No such large holes or slits were seen in saponin-treated erythrocytes, and the membrane was highly invaginated, giving the ghost a scalloped outline. Freeze-etch electron microscopy of saponin-treated membranes revealed 40–50 Å-wide pits in the extracellular surface of the membrane. If these pits represent regions from which cholesterol was extracted, then cholesterol is uniformly distributed over the entire erythrocyte membrane.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANGHAM A. D., HORNE R. W., GLAUERT A. M., DINGLE J. T., LUCY J. A. Action of saponin on biological cell membranes. Nature. 1962 Dec 8;196:952–955. doi: 10.1038/196952a0. [DOI] [PubMed] [Google Scholar]
  2. BETKE K., KLEIHAUER E. Experimentelle Beladung von Erythrocytenstromata mit Hämoglobin; ein Beitrag zur Frage der Reversion der Hämolyse. Klin Wochenschr. 1956 Jan 15;34(3-4):101–102. doi: 10.1007/BF01467173. [DOI] [PubMed] [Google Scholar]
  3. Baker R. F. Entry of ferritin into human red cells during hypotonic haemolysis. Nature. 1967 Jul 22;215(5099):424–425. doi: 10.1038/215424a0. [DOI] [PubMed] [Google Scholar]
  4. Baker R. F. Ultrastructure of the red blood cell. Fed Proc. 1967 Nov-Dec;26(6):1785–1801. [PubMed] [Google Scholar]
  5. Brown J. N., Harris J. R. The entry of ferritin into hemoglobin-free human erythrocyte ghosts prepared under different conditions. J Ultrastruct Res. 1970 Sep;32(5):405–416. doi: 10.1016/s0022-5320(70)80018-1. [DOI] [PubMed] [Google Scholar]
  6. Bullivant S., Ames A., 3rd A simple freeze-fracture replication method for electron microscopy. J Cell Biol. 1966 Jun;29(3):435–447. doi: 10.1083/jcb.29.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Canham P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol. 1970 Jan;26(1):61–81. doi: 10.1016/s0022-5193(70)80032-7. [DOI] [PubMed] [Google Scholar]
  8. DANON D. Osmotic hemolysis by a gradual decrease in the ionic strength of the surrounding medium. J Cell Comp Physiol. 1961 Apr;57:111–117. doi: 10.1002/jcp.1030570208. [DOI] [PubMed] [Google Scholar]
  9. DOURMASHKIN R. R., DOUGHERTY R. M., HARRIS R. J. Electron microscopic observations on Rous sarcoma virus and cell membranes. Nature. 1962 Jun 23;194:1116–1119. doi: 10.1038/1941116a0. [DOI] [PubMed] [Google Scholar]
  10. Easterbrook K. B. The arrangement of subunits in the shell of ferritin. Electron microscopic observations of molecules negatively stained with uranyl acetate. J Ultrastruct Res. 1970 Dec;33(5):442–450. doi: 10.1016/s0022-5320(70)90173-5. [DOI] [PubMed] [Google Scholar]
  11. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fromherz P. Electron microscopic studies of lipid protein films. Nature. 1971 May 28;231(5300):267–268. doi: 10.1038/231267a0. [DOI] [PubMed] [Google Scholar]
  13. HOFFMAN J. F. Physiological characteristics of human red blood cell ghosts. J Gen Physiol. 1958 Sep 20;42(1):9–28. doi: 10.1085/jgp.42.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HUSSON F., LUZZATI V. Structure of red-cell ghosts and the effect of saponin treatment. Nature. 1963 Feb 23;197:822–822. doi: 10.1038/197822a0. [DOI] [PubMed] [Google Scholar]
  15. Haggis G. H. The iron oxide core of the ferritin molecule. J Mol Biol. 1965 Dec;14(2):598–602. doi: 10.1016/s0022-2836(65)80210-8. [DOI] [PubMed] [Google Scholar]
  16. Haydon G. B. Visualization of substructure in ferritin molecules: an artifact. J Microsc. 1969;89(2):251–261. doi: 10.1111/j.1365-2818.1969.tb00672.x. [DOI] [PubMed] [Google Scholar]
  17. Hjelm M., Ostling S. G., Persson A. E. The loss of certain cellular components from human erythrocytes during hypotonic hemolysis in the presence of dextran. Acta Physiol Scand. 1966 May;67(1):43–49. doi: 10.1111/j.1748-1716.1966.tb03285.x. [DOI] [PubMed] [Google Scholar]
  18. Huhn D., Pauli G. D., Grassmann D. Die Erythrocytenmembran. Feinstruktur der gefriergeätzten Membran nach Einwirkung von hypotonen Lösungen und Saponin. Klin Wochenschr. 1970 Aug 1;48(15):939–943. doi: 10.1007/BF01487635. [DOI] [PubMed] [Google Scholar]
  19. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kwant W. O., Seeman P. The erythrocyte ghost is a perfect osmometer. J Gen Physiol. 1970 Feb;55(2):208–219. doi: 10.1085/jgp.55.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MARSDEN N. V., OSTLING S. G. Accumulation of dextran in human red cells after haemolysis. Nature. 1959 Aug 29;184(Suppl 10):723–724. doi: 10.1038/184723a0. [DOI] [PubMed] [Google Scholar]
  22. MURPHY J. R. ERYTHROCYTE METABOLISM. VI. CELL SHAPE AND THE LOCATION OF CHOLESTEROL IN THE ERYTHROCYTE MEMBRANE. J Lab Clin Med. 1965 May;65:756–774. [PubMed] [Google Scholar]
  23. Metcalfe J. C., Seeman P., Burgen A. S. The proton relaxation of benzyl alcohol in erythrocyte membranes. Mol Pharmacol. 1968 Jan;4(1):87–95. [PubMed] [Google Scholar]
  24. Nickel E., Potter L. T. Synaptic vesicles in freeze-etched electric tissue of Torpedo. Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):383–385. doi: 10.1098/rstb.1971.0070. [DOI] [PubMed] [Google Scholar]
  25. Nicolson G. L., Marchesi V. T., Singer S. J. The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies. J Cell Biol. 1971 Oct;51(1):265–272. doi: 10.1083/jcb.51.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tillack T. W., Marchesi V. T. Demonstration of the outer surface of freeze-etched red blood cell membranes. J Cell Biol. 1970 Jun;45(3):649–653. doi: 10.1083/jcb.45.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weinstein R. S., McNutt N. S. Ultrastructure of red cell membranes. Semin Hematol. 1970 Jul;7(3):259–274. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES