Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Feb 1;56(2):340–359. doi: 10.1083/jcb.56.2.340

MICROTUBULE BIOGENESIS AND CELL SHAPE IN OCHROMONAS

I. The Distribution of Cytoplasmic and Mitotic Microtubules

G Benjamin Bouck 1, David L Brown 1
PMCID: PMC2108894  PMID: 4682900

Abstract

In the first of two companion papers which attempt to correlate microtubules and their nucleating sites with developmental and cell division patterns in the unicellular flagellate, Ochromonas, the distribution of cytoplasmic and mitotic microtubules and various kinetosome-related fibers are detailed. Of the five kinetosome-related fibers, which have been found in Ochromonas, two, the kineto-beak fibers and the rhizoplast fibers are utilized as attachment sites for distinct groups of microtubules. The set of microtubules attached to the kineto-beak fibers apparently shape the anterior beak region of the cell whereas the rhizoplast microtubules appear to extend into and shape the tail in vegetative cells. In mitotic cells a rhizoplast is found at each spindle pole apparently serving as foci for the spindle microtubules. These findings are discussed in relation to the less well defined attachment sites for vegetative and mitotic microtubules in other kinds of cells. It is noted that the effects of depolymerizing microtubules in vivo might be easily quantitated in whole populations since no external wall or pellicle contributes to the maintenance or the biogenesis of the characteristic cell form of Ochromonas.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouck G. B. The structure, origin, isolation, and composition of the tubular mastigonemes of the Ochromas flagellum. J Cell Biol. 1971 Aug;50(2):362–384. doi: 10.1083/jcb.50.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cronshaw J., Esau K. Cell division in leaves of Nicotiana. Protoplasma. 1968;65(1):1–24. doi: 10.1007/BF01666368. [DOI] [PubMed] [Google Scholar]
  3. Dippell R. V. The development of basal bodies in paramecium. Proc Natl Acad Sci U S A. 1968 Oct;61(2):461–468. doi: 10.1073/pnas.61.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Friedländer M., Wahrman J. The spindle as a basal body distributor. A study in the meiosis of the male silkworm moth, Bombyx mori. J Cell Sci. 1970 Jul;7(1):65–89. doi: 10.1242/jcs.7.1.65. [DOI] [PubMed] [Google Scholar]
  5. Fulton C., Kane R. E., Stephens R. E. Serological similarity of flagellar and mitotic microtubules. J Cell Biol. 1971 Sep;50(3):762–773. doi: 10.1083/jcb.50.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GIBBS S. P. Nuclear envelope-chloroplast relationships in algae. J Cell Biol. 1962 Sep;14:433–444. doi: 10.1083/jcb.14.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbins J. R., Tilney L. G., Porter K. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. I. The distribution of microtubules. J Cell Biol. 1969 Apr;41(1):201–226. doi: 10.1083/jcb.41.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lui N. S., Roels O. A. Nitrogen metabolism of aquatic organisms. I. The assimilation and formation of urea in Ochromonas malhamensis. Arch Biochem Biophys. 1970 Aug;139(2):269–277. doi: 10.1016/0003-9861(70)90478-9. [DOI] [PubMed] [Google Scholar]
  9. Manton I., Kowallik K., von Stosch H. A. Observations on the fine structure and development of the spindle at mitosis and meiosis in a marine centric diatom (Lithodesmium undulatum). 3. The later stages of meiosis I in male gametogenesis. J Cell Sci. 1970 Jan;6(1):131–157. doi: 10.1242/jcs.6.1.131. [DOI] [PubMed] [Google Scholar]
  10. Manton I., Kowallik K., von Stosch H. A. Observations on the fine structure and development of the spindle at mitosis and meiosis in a marine centric diatom (Lithodesmium undulatum). II. The early meiotic stages in male gametogenesis. J Cell Sci. 1969 Jul;5(1):271–298. doi: 10.1242/jcs.5.1.271. [DOI] [PubMed] [Google Scholar]
  11. Moens P. B., Rapport E. Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J Cell Biol. 1971 Aug;50(2):344–361. doi: 10.1083/jcb.50.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Olmsted J. B., Carlson K., Klebe R., Ruddle F., Rosenbaum J. Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1970 Jan;65(1):129–136. doi: 10.1073/pnas.65.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Olmsted J. B., Witman G. B., Carlson K., Rosenbaum J. L. Comparison of the microtubule proteins of neuroblastoma cells, brain, and Chlamydomonas flagella. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2273–2277. doi: 10.1073/pnas.68.9.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Outka D. E., Kluss B. C. The ameba-to-flagellate transformation in Tetramitus rostratus. II. Microtubular morphogenesis. J Cell Biol. 1967 Nov;35(2):323–346. doi: 10.1083/jcb.35.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pickett-Heaps J. D., Northcote D. H. Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci. 1966 Mar;1(1):109–120. doi: 10.1242/jcs.1.1.109. [DOI] [PubMed] [Google Scholar]
  16. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ROBBINS E., GONATAS N. K. THE ULTRASTRUCTURE OF A MAMMALIAN CELL DURING THE MITOTIC CYCLE. J Cell Biol. 1964 Jun;21:429–463. doi: 10.1083/jcb.21.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reichle R. E. Fine structure of Phytophthora parasitica zoospores. Mycologia. 1969 Jan-Feb;60(1):30–51. [PubMed] [Google Scholar]
  19. Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robinow C. F., Marak J. A fiber apparatus in the nucleus of the yeast cell. J Cell Biol. 1966 Apr;29(1):129–151. doi: 10.1083/jcb.29.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rosenbaum J. L., Child F. M. Flagellar regeneration in protozoan flagellates. J Cell Biol. 1967 Jul;34(1):345–364. doi: 10.1083/jcb.34.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roth L. E., Pihlaja D. J., Shigenaka Y. Microtubules in the heliozoan axopodium. I. The gradion hypothesis of allosterism in structural proteins. J Ultrastruct Res. 1970 Jan;30(1):7–37. doi: 10.1016/s0022-5320(70)90062-6. [DOI] [PubMed] [Google Scholar]
  23. Schuster F. L., Hershenov B., Aaronson S. Ultrastructureal observations on aging of stationary cultures and feeding in Ochromonas. J Protozool. 1968 May;15(2):335–346. doi: 10.1111/j.1550-7408.1968.tb02133.x. [DOI] [PubMed] [Google Scholar]
  24. Simpson P. A., Dingle A. D. Variable periodicity in the rhizoplast of Naegleria flagellates. J Cell Biol. 1971 Oct;51(1):323–328. doi: 10.1083/jcb.51.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  26. Stephens R. E. Reassociation of microtubule protein. J Mol Biol. 1968 Apr 28;33(2):517–519. doi: 10.1016/0022-2836(68)90210-6. [DOI] [PubMed] [Google Scholar]
  27. Stubblefield E., Brinkley B. R. Cilia formation in Chinese hamster fibroblasts in vitro as a response to colcemid treatment. J Cell Biol. 1966 Sep;30(3):645–652. doi: 10.1083/jcb.30.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tilney L. G., Byers B. Studies on the microtubules in heliozoa. V. Factors controlling the organization of microtubules in the Axonemal pattern in Echinosphaerium (Actinosphaerium) nucleofilum. J Cell Biol. 1969 Oct;43(1):148–165. doi: 10.1083/jcb.43.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tilney L. G., Gibbins J. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J Cell Biol. 1969 Apr;41(1):227–250. doi: 10.1083/jcb.41.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tilney L. G., Goddard J. Nucleated sites for the assembly of cytoplasmic microtubules in the ectodermal cells of blastulae of Arbacia punctulata. J Cell Biol. 1970 Sep;46(3):564–575. doi: 10.1083/jcb.46.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tilney L. G., Porter K. R. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J Cell Biol. 1967 Jul;34(1):327–343. doi: 10.1083/jcb.34.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tucker J. B. Morphogenesis of a large microtubular organelle and its association with basal bodies in the ciliate Nassula. J Cell Sci. 1970 Mar;6(2):385–429. doi: 10.1242/jcs.6.2.385. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES