Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Feb 1;56(2):379–388. doi: 10.1083/jcb.56.2.379

TEMPORAL CHANGES IN PH WITHIN THE PHAGOCYTIC VACUOLE OF THE POLYMORPHONUCLEAR NEUTROPHILIC LEUKOCYTE

Michael S Jensen 1, Dorothy F Bainton 1
PMCID: PMC2108909  PMID: 4118890

Abstract

Although previous workers have established that the pH of the phagocytic vacuole of the polymorphonuclear (PMN) leukocyte changes from neutral to acid, the time course of conversion has not been investigated. The present experiments were initiated to study pH changes immediately after phagocytosis. Peritoneal exudates were induced in rats; 4 h later, yeast stained with pH indicators was injected intraperitoneally, and the exudate was retrieved at 30-s intervals and examined by light microscopy. Results revealed that (a) within 3 min, pH dropped to ∼6.5, as indicated by the change in color of neutral red-stained yeast; (b) within 7–15 min, pH dropped progressively to ∼4.0, as indicated by color change in bromcresol green-stained yeast; (c) pH did not fall below 4, since no color change was observed up to 24 h when bromphenol blue-stained yeast was used. The finding that intravacuolar acidity increases rapidly after phagocytosis is undoubtedly important with respect to PMN leukocyte function in killing and digesting microorganisms, for many PMN leukocyte granule enzymes (i.e., peroxidase and lysosomal enzymes) are activated at acid pH (∼4.5). It follows that temporal changes in pH and maximal pH depression should be considered in studies of intraleukocytic microbicidal mechanisms, since a defect in these factors could result in impaired PMN leukocyte function.

Full Text

The Full Text of this article is available as a PDF (793.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baggiolini M., De Duve C., Masson P. L., Heremans J. F. Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J Exp Med. 1970 Mar 1;131(3):559–570. doi: 10.1084/jem.131.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baggiolini M., Hirsch J. G., De Duve C. Further biochemical and morphological studies of granule fractions from rabbit heterophil leukocytes. J Cell Biol. 1970 Jun;45(3):586–597. doi: 10.1083/jcb.45.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baggiolini M., Hirsch J. G., De Duve C. Resolution of granules from rabbit heterophil leukocytes into distinct populations by zonal sedimentation. J Cell Biol. 1969 Feb;40(2):529–541. doi: 10.1083/jcb.40.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. I. Histochemical staining of bone marrow smears. J Cell Biol. 1968 Nov;39(2):286–298. doi: 10.1083/jcb.39.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol. 1968 Nov;39(2):299–317. doi: 10.1083/jcb.39.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Belding M. E., Klebanoff S. J., Ray C. G. Peroxidase-mediated virucidal systems. Science. 1970 Jan 9;167(3915):195–196. doi: 10.1126/science.167.3915.195. [DOI] [PubMed] [Google Scholar]
  7. COHN Z. A., HIRSCH J. G. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med. 1960 Dec 1;112:983–1004. doi: 10.1084/jem.112.6.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. COHN Z. A. The fate of bacteria within phagocytic cells. I. The degradation of isotopically labeled bacteria by polymorphonuclear leucocytes and macrophages. J Exp Med. 1963 Jan 1;117:27–42. doi: 10.1084/jem.117.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coffey J. W., De Duve C. Digestive activity of lysosomes. I. The digestion of proteins by extracts of rat liver lysosomes. J Biol Chem. 1968 Jun 25;243(12):3255–3263. [PubMed] [Google Scholar]
  10. Davies P., Rita G. A., Krakauer K., Weissmann G. Characterization of a neutral protease from lysosomes of rabbit polymorphonuclear leucocytes. Biochem J. 1971 Jul;123(4):559–569. doi: 10.1042/bj1230559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Duve C., Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. [DOI] [PubMed] [Google Scholar]
  12. Elsbach P., Kayden H. J. Chylomicron-lipid-splitting activity in homogenates of rabbit polymorphonuclear leukocytes. Am J Physiol. 1965 Oct;209(4):765–769. doi: 10.1152/ajplegacy.1965.209.4.765. [DOI] [PubMed] [Google Scholar]
  13. Farquhar M. G., Bainton D. F., Baggiolini M., de Duve C. Cytochemical localization of acid phosphatase activity in granule fractions from rabbit polymorphonuclear leukocytes. J Cell Biol. 1972 Jul;54(1):141–156. doi: 10.1083/jcb.54.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goettlich-Riemann W., Young J. O., Tappel A. L. Cathepsins D, A and B, and the effect of pH in the pathway of protein hydrolysis. Biochim Biophys Acta. 1971 Jul 25;243(1):137–146. doi: 10.1016/0005-2795(71)90047-x. [DOI] [PubMed] [Google Scholar]
  15. HIRSCH J. G., COHN Z. A. Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms. J Exp Med. 1960 Dec 1;112:1005–1014. doi: 10.1084/jem.112.6.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hardin J. H., Spicer S. S. Ultrastructural localization of dialyzed iron-reactive mucosubstance in rabbit heterophils, basophils, and eosinophils. J Cell Biol. 1971 Feb;48(2):368–386. doi: 10.1083/jcb.48.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Janoff A., Scherer J. Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J Exp Med. 1968 Nov 1;128(5):1137–1155. doi: 10.1084/jem.128.5.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kakinuma K. Metabolic control and intracellular pH during phagocytosis by polymorphonuclear leucocytes. J Biochem. 1970 Aug;68(2):177–185. doi: 10.1093/oxfordjournals.jbchem.a129344. [DOI] [PubMed] [Google Scholar]
  19. Karnovsky M. L. The metabolism of leukocytes. Semin Hematol. 1968 Apr;5(2):156–165. [PubMed] [Google Scholar]
  20. Klebanoff S. J. Intraleukocytic microbicidal defects. Annu Rev Med. 1971;22:39–62. doi: 10.1146/annurev.me.22.020171.000351. [DOI] [PubMed] [Google Scholar]
  21. Klebanoff S. J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol. 1968 Jun;95(6):2131–2138. doi: 10.1128/jb.95.6.2131-2138.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lazarus G. S., Daniels J. R., Brown R. S., Bladen H. A., Fullmer H. M. Degradation of collagen by a human granulocyte collagenolytic system. J Clin Invest. 1968 Dec;47(12):2622–2629. doi: 10.1172/JCI105945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Malawista S. E., Bodel P. T. The dissociation by colchicine of phagocytosis from increased oxygen consumption in human leukocytes. J Clin Invest. 1967 May;46(5):786–796. doi: 10.1172/JCI105579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mandell G. L. Intraphagosomal pH of human polymorphonuclear neutrophils. Proc Soc Exp Biol Med. 1970 Jun;134(2):447–449. doi: 10.3181/00379727-134-34810. [DOI] [PubMed] [Google Scholar]
  25. Masson P. L., Heremans J. F., Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. 1969 Sep 1;130(3):643–658. doi: 10.1084/jem.130.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reed P. W., Tepperman J. Phagocytosis-associated metabolism and enzymes in the rat polymorphonuclear leukocyte. Am J Physiol. 1969 Feb;216(2):223–230. doi: 10.1152/ajplegacy.1969.216.2.223. [DOI] [PubMed] [Google Scholar]
  27. Saint-Blancard J., Chuzel P., Mathieu Y., Perrot J., Jollès P. Influence of pH and ionic strength of the lysis of Micrococcus lysodeikticus cells by six human and four avian lysozymes. Biochim Biophys Acta. 1970 Nov 11;220(2):300–306. doi: 10.1016/0005-2744(70)90014-8. [DOI] [PubMed] [Google Scholar]
  28. WILSON A. T., WILEY G. G., BRUNO P. Fate of non-virulent group A streptococci phagocytized by human and mouse neutrophils. J Exp Med. 1957 Dec 1;106(6):777–786. doi: 10.1084/jem.106.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wetzel B. K., Spicer S. S., Horn R. G. Fine structural localization of acid and alkaline phosphatases in cells of rabbit blood and bone marrow. J Histochem Cytochem. 1967 Jun;15(6):311–334. doi: 10.1177/15.6.311. [DOI] [PubMed] [Google Scholar]
  30. ZUCKER-FRANKLIN D., HIRSCH J. G. ELECTRON MICROSCOPE STUDIES ON THE DEGRANULATION OF RABBIT PERITONEAL LEUKOCYTES DURING PHAGOCYTOSIS. J Exp Med. 1964 Oct 1;120:569–576. doi: 10.1084/jem.120.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zeya H. I., Spitznagel J. K. Characterization of cationic protein-bearing granules of polymorphonuclear leukocytes. Lab Invest. 1971 Mar;24(3):229–236. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES