Abstract
The proposal made in the preceding paper that the species-specific shape of Ochromonas is mediated by cytoplasmic microtubules which are related to two nucleating sites has been experimentally verified. Exposure of cells to colchicine or hydrostatic pressure causes microtubule disassembly and a correlative loss of cell shape in a posterior to anterior direction. Upon removal of colchicine or release of pressure, cell shape regenerates and microtubules reappear, first in association with the kineto-beak site concomitant with regeneration of the anterior asymmetry, and later at the rhizoplast site concomitant with formation of the posterior tail. It is concluded that two separate sets of cytoplasmic tubules function in formation and maintenance of specific portions of the total cell shape. On the basis of the following observations, we further suggest that the beak and rhizoplast sites could exert control over the position and timing of the appearance, the orientation, and the pattern of microtubule distribution in Ochromonas. (a) the two sites are accurately positioned in the cell relative to other cell organelles; (b) in regenerating cells microtubules reform first at these sites and appear to elongate to the cell posterior; (c) microtubules initially reappear in the orientation characteristic of the fully differentiated cell; (d) the two sets of tubules are polymerized at different times, in the same sequence, during reassembly or resynthesis of the microtubular system. Experiments using cycloheximide, after a treatment with colchicine, have demonstrated that Ochromonas cannot reassume its normal shape without new protein synthesis. This suggests that microtubule protein once exposed to colchicine cannot be reassembled into microtubules. Pressure-treated cells, on the other hand, reassemble tubules and regenerate the normal shape in the presence or absence of cycloheximide. The use of these two agents in analyzing nucleating site function and the independent processes of synthesis and assembly of microtubules is discussed.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behnke O. A comparative study of microtubules of disk-shaped blood cells. J Ultrastruct Res. 1970 Apr;31(1):61–75. doi: 10.1016/s0022-5320(70)90145-0. [DOI] [PubMed] [Google Scholar]
- Behnke O., Forer A. Evidence for four classes of microtubules in individual cells. J Cell Sci. 1967 Jun;2(2):169–192. doi: 10.1242/jcs.2.2.169. [DOI] [PubMed] [Google Scholar]
- Bensch K. G., Malawista S. E. Microtubular crystals in mammalian cells. J Cell Biol. 1969 Jan;40(1):95–107. doi: 10.1083/jcb.40.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bensch K. G., Marantz R., Wisniewski H., Shelanski M. Induction in vitro of microtubular crystals by vinca alkaloids. Science. 1969 Aug 1;165(3892):495–496. doi: 10.1126/science.165.3892.495. [DOI] [PubMed] [Google Scholar]
- Borisy G. G., Taylor E. W. The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J Cell Biol. 1967 Aug;34(2):525–533. doi: 10.1083/jcb.34.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouck G. B., Brown D. L. Microtubule biogenesis and cell shape in Ochromonas. I. The distribution of cytoplasmic and mitotic microtubules. J Cell Biol. 1973 Feb;56(2):340–359. doi: 10.1083/jcb.56.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulton C., Kane R. E., Stephens R. E. Serological similarity of flagellar and mitotic microtubules. J Cell Biol. 1971 Sep;50(3):762–773. doi: 10.1083/jcb.50.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbins J. R., Tilney L. G., Porter K. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. I. The distribution of microtubules. J Cell Biol. 1969 Apr;41(1):201–226. doi: 10.1083/jcb.41.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman R. D. The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J Cell Biol. 1971 Dec;51(3):752–762. doi: 10.1083/jcb.51.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Kennedy J. R., Zimmerman A. M. The effects of high hydrostatic pressure on the microtubules of Tetrahymena pyriformis. J Cell Biol. 1970 Dec;47(3):568–576. doi: 10.1083/jcb.47.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LANDAU J. V., THIBODEAU L. The micromorphology of Amoeba proteus during pressure-induced changes in the sol-gel cycle. Exp Cell Res. 1962 Sep;27:591–594. doi: 10.1016/0014-4827(62)90027-7. [DOI] [PubMed] [Google Scholar]
- Mueller G. A., Gaulden M. E., Drane W. The effects of varying concentrations of colchicine on the progression of grasshopper neuroblasts into metaphase. J Cell Biol. 1971 Feb;48(2):253–265. doi: 10.1083/jcb.48.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olmsted J. B., Witman G. B., Carlson K., Rosenbaum J. L. Comparison of the microtubule proteins of neuroblastoma cells, brain, and Chlamydomonas flagella. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2273–2277. doi: 10.1073/pnas.68.9.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbaum J. L., Child F. M. Flagellar regeneration in protozoan flagellates. J Cell Biol. 1967 Jul;34(1):345–364. doi: 10.1083/jcb.34.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbaum J. L., Moulder J. E., Ringo D. L. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol. 1969 May;41(2):600–619. doi: 10.1083/jcb.41.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Gibbins J. R. Differential effects of antimitotic agents on the stability and behavior of cytoplasmic and ciliary microtubules. Protoplasma. 1968;65(1):167–179. doi: 10.1007/BF01666377. [DOI] [PubMed] [Google Scholar]
- Tilney L. G., Gibbins J. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J Cell Biol. 1969 Apr;41(1):227–250. doi: 10.1083/jcb.41.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Goddard J. Nucleated sites for the assembly of cytoplasmic microtubules in the ectodermal cells of blastulae of Arbacia punctulata. J Cell Biol. 1970 Sep;46(3):564–575. doi: 10.1083/jcb.46.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G. How microtubule patterns are generated. The relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys. J Cell Biol. 1971 Dec;51(3):837–854. doi: 10.1083/jcb.51.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tucker J. B. Initiation and differentiation of microtubule patterns in the ciliate Nassula. J Cell Sci. 1970 Nov;7(3):793–821. doi: 10.1242/jcs.7.3.793. [DOI] [PubMed] [Google Scholar]
- Wilson L. Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry. 1970 Dec 8;9(25):4999–5007. doi: 10.1021/bi00827a026. [DOI] [PubMed] [Google Scholar]
- Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]