Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Mar 1;56(3):762–776. doi: 10.1083/jcb.56.3.762

PERMEABILITY OF MICROSOMAL MEMBRANES ISOLATED FROM RAT LIVER

Robert Nilsson 1, Elisabeth Peterson 1, Gustav Dallner 1
PMCID: PMC2108920  PMID: 4405788

Abstract

Water compartments, permeability, and the possible active translocation of various substances in rat liver microsomes were studied by using radioactive compounds and ultracentrifugation. The total water of the microsomal pellet, 3.4 µl/mg dry weight, is the sum of water in the extramicrosomal and intramicrosomal spaces, or 56 and 44%, respectively. Sucrose space accounts for 77% of the intramicrosomal water and the hydration water ∼ 14%, leaving almost no sucrose-impermeable space when using the ultracentrifugation approach. With increasing sucrose concentration, microsomes do not show an osmotic response. The intramicrosomal water decreases greatly in the presence of Cs+ and Mg++ in rough but not in smooth microsomes. Uncharged substances of molecular weight of up to at least 600 freely penetrate microsomal membranes, which already become impermeable to charged substances at a molecular weight of 90. These substances also induce an osmotic response. The vesicles can be made permeable to charged substances after water treatment and cooling, which, however, does not increase glucose-6-phosphatase and inosine diphosphatase (IDPase) activities, and these enzymes can still be activated by deoxycholate. IDPase, reduced nicotinamide adenine dinucleotide-cytochrome c reductase, and reduced nicotinamide adenine dinucleotide phosphate-dependent hydroxylation reactions, performed in vitro, also disproved the hypothesis of an accumulation of charged substances inside of vesicles of being a major pathway. The products of the enzymic reactions as well as the glucuronidated form of a hydroxylated product can be recovered on the cytoplasmic side of membranes, and little accumulation occurs in the intravesicular compartment.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARCOS J. C., ARCOS M. Fine-structural alterations in cell particles during chemical carcinogenesis. I. Influence of the feeding of aminoazo dyes on the swelling and solubilization of rat-liver microsomes. Biochim Biophys Acta. 1958 Apr;28(1):9–20. doi: 10.1016/0006-3002(58)90421-9. [DOI] [PubMed] [Google Scholar]
  2. Ashley C. A., Peters T., Jr Electron microscopic radioautographic detection of sites of protein synthesis and migration in liver. J Cell Biol. 1969 Nov;43(2):237–249. doi: 10.1083/jcb.43.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Behrens N. H., Leloir L. F. Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. Proc Natl Acad Sci U S A. 1970 May;66(1):153–159. doi: 10.1073/pnas.66.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chesterton C. J. The subcellular site of cholesterol synthesis in rat liver. Biochem Biophys Res Commun. 1966 Oct 20;25(2):205–209. doi: 10.1016/0006-291x(66)90581-x. [DOI] [PubMed] [Google Scholar]
  6. Dallner G., Behrens N. H., Parodi A. J., Leloir L. F. Subcellular distribution of dolichol phosphate. FEBS Lett. 1972 Aug 15;24(3):315–317. doi: 10.1016/0014-5793(72)80380-6. [DOI] [PubMed] [Google Scholar]
  7. Dallner G., Bergstrand A., Nilsson R. Heterogeneity of rough-surfaced liver microsomal membranes of adult, phenobarbital-treated, and newborn rats. J Cell Biol. 1968 Aug;38(2):257–276. doi: 10.1083/jcb.38.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dallner G., Ernster L. Subfractionation and composition of microsomal membranes: a review. J Histochem Cytochem. 1968 Oct;16(10):611–632. doi: 10.1177/16.10.611. [DOI] [PubMed] [Google Scholar]
  9. Dallner G., Nilsson R. Mechanism of the cation effect in subfractionation of microsomes. J Cell Biol. 1966 Oct;31(1):181–193. doi: 10.1083/jcb.31.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Duve C. The separation and characterization of subcellular particles. Harvey Lect. 1965;59:49–87. [PubMed] [Google Scholar]
  12. EMMELOT P., BENEDETTI E. L. Changes in the fine structure of rat liver cells brought about by dimethylnitrosamine. J Biophys Biochem Cytol. 1960 Apr;7:393–396. doi: 10.1083/jcb.7.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ERNSTER L., LINDBERG O. Determination of organic phosphorus compounds by phosphate analysis. Methods Biochem Anal. 1956;3:1–22. doi: 10.1002/9780470110195.ch1. [DOI] [PubMed] [Google Scholar]
  14. Glaumann H., Dallner G. Lipid composition and turnover of rough and smooth microsomal membranes in rat liver. J Lipid Res. 1968 Nov;9(6):720–729. [PubMed] [Google Scholar]
  15. Glaumann H., Dallner G. Subfractionation of smooth microsomes from rat liver. J Cell Biol. 1970 Oct;47(1):34–48. doi: 10.1083/jcb.47.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glaumann H., Nilsson R., Dallner G. Cytoplasmic location of certain small molecules after their metabolism by the endoplasmic reticulum of rat liver. FEBS Lett. 1970 Oct;10(5):306–308. doi: 10.1016/0014-5793(70)80459-8. [DOI] [PubMed] [Google Scholar]
  17. Glaumann H. Studies on the synthesis and transport of albumin in microsomal subfractions from rat liver. Biochim Biophys Acta. 1970 Nov 12;224(1):206–218. doi: 10.1016/0005-2787(70)90634-9. [DOI] [PubMed] [Google Scholar]
  18. Jakobsson S. V., Dallner G. Nature of the increase in liver microsomal glucose-6-phosphatase activity during the early stage alloxan-induced diabetes. Biochim Biophys Acta. 1968 Oct 15;165(3):380–392. [PubMed] [Google Scholar]
  19. Jerina D. M., Daly J. W., Witkop B., Zaltzman-Nirenberg P., Udenfriend S. 1,2-naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene. Biochemistry. 1970 Jan 6;9(1):147–156. doi: 10.1021/bi00803a019. [DOI] [PubMed] [Google Scholar]
  20. Johnson J. H., Tedeschi H. Photometric observations of rat liver microsomal suspensions. Arch Biochem Biophys. 1968 Mar 20;124(1):58–69. doi: 10.1016/0003-9861(68)90303-2. [DOI] [PubMed] [Google Scholar]
  21. Jones A. L., Ruderman N. B., Herrera M. G. Electron microscopic and biochemical study of lipoprotein synthesis in the isolated perfused rat liver. J Lipid Res. 1967 Sep;8(5):429–446. [PubMed] [Google Scholar]
  22. KLINGENBERG M., SLENCZKA W. [Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships]. Biochem Z. 1959;331:486–517. [PubMed] [Google Scholar]
  23. Kodama R. M., Tedeschi H. Studies on the permeability of calf thymus nuclei isolated in sucrose. J Cell Biol. 1968 Jun;37(3):747–760. doi: 10.1083/jcb.37.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lawford G. R., Schachter H. Biosynthesis of glycoprotein by liver. The incorporation in vivo of 14C-glucosamine into protein-bound hexosamine and sialic acid of rat liver subcellular fractions. J Biol Chem. 1966 Nov 25;241(22):5408–5418. [PubMed] [Google Scholar]
  26. MALAMED S., RECKNAGEL R. O. The osmotic behavior of the sucrose-inaccessible space of mitochondrial pellets from rat liver. J Biol Chem. 1959 Nov;234:3027–3030. [PubMed] [Google Scholar]
  27. MOLNAR J., ROBINSON G. B., WINZLER R. J. BIOSYNTHESIS OF GLYCOPROTEINS. IV. THE SUBCELLULAR SITES OF INCORPORATION OF GLUCOSAMINE-1-14-C INTO GLYCOPROTEIN RAT LIVER. J Biol Chem. 1965 May;240:1882–1888. [PubMed] [Google Scholar]
  28. Mulder G. J. The effect of phenobarbital on the submicrosomal distribution of uridine diphosphate glucuronyltransferase from rat liver. Biochem J. 1970 Apr;117(2):319–324. doi: 10.1042/bj1170319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nilsson R., Ahnström G. A rapid and sensitive method for the measurement of biological oxidation of an aromatic hydrocarbon catalyzed by liver microsomes. Acta Chem Scand. 1967;21(5):1377–1379. doi: 10.3891/acta.chem.scand.21-1377. [DOI] [PubMed] [Google Scholar]
  31. Nilsson R., Pettersson E., Dallner G. Permeability properties of rat live endoplasmic reticulum. FEBS Lett. 1971 Jun 2;15(1):85–88. doi: 10.1016/0014-5793(71)80085-6. [DOI] [PubMed] [Google Scholar]
  32. O'Brien R. L., Brierley G. Compartmentation of heart mitochondria. I. Permeability characteristics of isolated beef heart mitochondria. J Biol Chem. 1965 Nov;240(11):4527–4531. [PubMed] [Google Scholar]
  33. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. PETERS T., Jr The biosynthesis of rat serum albumin. I. Properties of rat albumin and its occurrence in liver cell fractions. J Biol Chem. 1962 Apr;237:1181–1185. [PubMed] [Google Scholar]
  35. Richards J. B., Evans P. J., Hemming F. W. Dolichol phosphates as acceptors of mannose from guanosine diphosphate mannose in liver systems. Biochem J. 1971 Oct;124(5):957–959. doi: 10.1042/bj1240957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Robinson J. D. Structural changes in microsomal suspensions. II. Studies with brain microsomes. Arch Biochem Biophys. 1965 Jun;110(3):475–484. doi: 10.1016/0003-9861(65)90438-8. [DOI] [PubMed] [Google Scholar]
  37. Rodbell M. Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem. 1966 Jan 10;241(1):130–139. [PubMed] [Google Scholar]
  38. SHARE L., HANSROTE R. W. Permeability of rat liver microsomes to sucrose and carboxypolyglucose in vitro. J Biophys Biochem Cytol. 1960 Apr;7:239–242. doi: 10.1083/jcb.7.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. SMUCKLER E. A., ISERI O. A., BENDITT E. P. An intracellular defect in protein synthesis induced by carbon tetrachloride. J Exp Med. 1962 Jul 1;116:55–72. doi: 10.1084/jem.116.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. SVOBODA D., HIGGINSON J. ULTRASTRUCTURAL CHANGES PRODUCED BY PROTEIN AND RELATED DEFICIENCIES IN THE RAT LIVER. Am J Pathol. 1964 Sep;45:353–379. [PMC free article] [PubMed] [Google Scholar]
  41. Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]
  42. Schramm M., Eisenkraft B., Barkai E. Cold-induced leakage of amylase from the zymogen granule and sealing of its membrane by specific lipids. Biochim Biophys Acta. 1967 Feb 1;135(1):44–52. doi: 10.1016/0005-2736(67)90006-5. [DOI] [PubMed] [Google Scholar]
  43. TEDESCHI H., HARRIS D. L. The osmotic behavior and permeability to non-electrolytes of mitochondria. Arch Biochem Biophys. 1955 Sep;58(1):52–67. doi: 10.1016/0003-9861(55)90092-8. [DOI] [PubMed] [Google Scholar]
  44. TEDESCHI H., JAMES J. M., ANTHONY W. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES. J Cell Biol. 1963 Sep;18:503–513. doi: 10.1083/jcb.18.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. WALLACH D. F., KAMAT V. B. PLASMA AND CYTOPLASMIC MEMBRANE FRAGMENTS FROM EHRLICH ASCITES CARCINOMA. Proc Natl Acad Sci U S A. 1964 Sep;52:721–728. doi: 10.1073/pnas.52.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. WILGRAM G. F., KENNEDY E. P. INTRACELLULAR DISTRIBUTION OF SOME ENZYMES CATALYZING REACTIONS IN THE BIOSYNTHESIS OF COMPLEX LIPIDS. J Biol Chem. 1963 Aug;238:2615–2619. [PubMed] [Google Scholar]
  47. Wallach D. F., Kamat V. B., Gail M. H. Physicochemical differences between fragments of plasma membrane and endoplasmic reticulum. J Cell Biol. 1966 Sep;30(3):601–621. doi: 10.1083/jcb.30.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES