Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Mar 1;56(3):850–857. doi: 10.1083/jcb.56.3.850

THE ROLE OF MICROFILAMENTS IN FROG SKIN ION TRANSPORT

James N Pratley 1, Nancy K McQuillen 1
PMCID: PMC2108930  PMID: 4569314

Full Text

The Full Text of this article is available as a PDF (928.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CURRAN P. F., GILL J. R., Jr The effect of calcium on sodium transport by frog skin. J Gen Physiol. 1962 Mar;45:625–641. doi: 10.1085/jgp.45.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dahl R. H., Pratley J. N. The effects of magnesium on nucleoside phosphatase activity in frog skin. J Cell Biol. 1967 May;33(2):411–418. doi: 10.1083/jcb.33.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Farquhar M. G., Palade G. E. Adenosine triphosphatase localization in amphibian epidermis. J Cell Biol. 1966 Aug;30(2):359–379. doi: 10.1083/jcb.30.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Matoltsy A. G., Matoltsy M. N. The chemical nature of keratohyalin granules of the epidermis. J Cell Biol. 1970 Dec;47(3):593–603. doi: 10.1083/jcb.47.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McGuire J., Moellmann G. Cytochalasin B: effects on microfilaments and movement of melanin granules within melanocytes. Science. 1972 Feb 11;175(4022):642–644. doi: 10.1126/science.175.4022.642. [DOI] [PubMed] [Google Scholar]
  7. Morain W. D., Replogle C. A., Curran P. F. Effect of dimethyl sulfoxide on permeability and electrical properties of frog skin. J Pharmacol Exp Ther. 1966 Nov;154(2):298–302. [PubMed] [Google Scholar]
  8. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
  9. Voute C. L., Ussing H. H. Quantitative relation between hydrostatic pressure gradient, extracellular volume and active sodium transport in the epithelium of the frog skin (R. temporaria). Exp Cell Res. 1970 Oct;62(2):375–383. doi: 10.1016/0014-4827(70)90568-9. [DOI] [PubMed] [Google Scholar]
  10. Voûte C. L., Ussing H. H. Some morphological aspects of active sodium transport. The epithelium of the frog skin. J Cell Biol. 1968 Mar;36(3):625–638. doi: 10.1083/jcb.36.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Voûte C. L., Ussing H. H. The morphological aspects of shunt-path in the epithelium of the frog skin (R. temporaria). Exp Cell Res. 1970 Jul;61(1):133–140. doi: 10.1016/0014-4827(70)90266-1. [DOI] [PubMed] [Google Scholar]
  12. Whaley W. G., Dauwalder M., Kephart J. E. Golgi apparatus: influence on cell surfaces. Science. 1972 Feb 11;175(4022):596–599. doi: 10.1126/science.175.4022.596. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES