Abstract
DNA isolated from macronuclei of the ciliate, Tetrahymena pyriformis, has been found to contain [6N]methyl adenine (MeAde); this represents the first clear demonstration of significant amounts of MeAde in the DNA of a eucaryote. The amounts of macronuclear MeAde differed slightly between different strains of Tetrahymena, with approximately 0.65–0.80% of the adenine bases being methylated. The MeAde content of macronuclear DNA did not seem to vary in different physiological states. The level of MeAde in DNA isolated from micronuclei, on the other hand, was quite low (at least tenfold lower than in macronuclear DNA).
Full Text
The Full Text of this article is available as a PDF (345.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arber W., Rifat A., Wauters-Willems D., Kühnlein U. Host specificity of DNA produced by Escherichia coli. XVI. Phage lambda DNA carries a single site of affinity for A-specific restriction and modification. Mol Gen Genet. 1972;115(3):195–207. doi: 10.1007/BF00268883. [DOI] [PubMed] [Google Scholar]
- Burdon R. H., Adams R. L. The in vivo methylation of DNA in mouse fibroblasts. Biochim Biophys Acta. 1969 Jan 21;174(1):322–329. doi: 10.1016/0005-2787(69)90257-3. [DOI] [PubMed] [Google Scholar]
- Burdon R. H. Methylation of nucleic acids in Krebs II ascites tumour cells. Nature. 1966 May 21;210(5038):797–799. doi: 10.1038/210797a0. [DOI] [PubMed] [Google Scholar]
- Cleffmann G. Regulierung der DNS-Menge im Makronucleus von Tetrahymena. Exp Cell Res. 1968 Apr;50(1):193–207. doi: 10.1016/0014-4827(68)90407-2. [DOI] [PubMed] [Google Scholar]
- Culp L. A., Dore E., Brown G. M. Methylated bases in DNA of animal origin. Arch Biochem Biophys. 1970 Jan;136(1):73–79. doi: 10.1016/0003-9861(70)90328-0. [DOI] [PubMed] [Google Scholar]
- Evans H. H., Evans T. E. Methylation of the deoxyribonucleic acid of Physarum polycephalum at various periods during the mitotic cycle. J Biol Chem. 1970 Dec 10;245(23):6436–6441. [PubMed] [Google Scholar]
- Flickinger C. J. The fine structure of the nuclei of Tetrahymena pyriformis throughout the cell cycle. J Cell Biol. 1965 Dec;27(3):519–529. doi: 10.1083/jcb.27.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorovsky M. A. Studies on nuclear structure and function in Tetrahymena pyriformis. II. Isolation of macro- and micronuclei. J Cell Biol. 1970 Dec;47(3):619–630. doi: 10.1083/jcb.47.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grippo P., Iaccarino M., Parisi E., Scarano E. Methylation of DNA in developing sea urchin embryos. J Mol Biol. 1968 Sep 14;36(2):195–208. doi: 10.1016/0022-2836(68)90375-6. [DOI] [PubMed] [Google Scholar]
- Hattman S. DNA methylation of T-even bacteriophages and of their nonglucosylated mutants: its role in P1-directed restriction. Virology. 1970 Oct;42(2):359–367. doi: 10.1016/0042-6822(70)90279-5. [DOI] [PubMed] [Google Scholar]
- Hattman S., Gold E., Plotnik A. Methylation of cytosine residues in DNA controlled by a drug resistance factor (host-induced modification-R factors-N 6 -methyladenine-5-methylcytosine). Proc Natl Acad Sci U S A. 1972 Jan;69(1):187–190. doi: 10.1073/pnas.69.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hattman S. Variation of 6-methylaminopurine content in bacteriophage P22 deoxyribonucleic acid as a function of host specificity. J Virol. 1971 May;7(5):690–691. doi: 10.1128/jvi.7.5.690-691.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch-Kauffmann M., Sauerbier W. Inhibition of modification and restriction for phages lambda and T-1 by co-infecting T3. Mol Gen Genet. 1968;102(2):89–94. doi: 10.1007/BF01789134. [DOI] [PubMed] [Google Scholar]
- Hotta Y., Hecht N. Methylation of Lilium DNA during the meiotic cycle. Biochim Biophys Acta. 1971 Apr 29;238(1):50–59. doi: 10.1016/0005-2787(71)90008-6. [DOI] [PubMed] [Google Scholar]
- Kalousek F., Morris N. R. Deoxyribonucleic acid methylase activity in pea seedlings. Science. 1969 May 9;164(3880):721–722. doi: 10.1126/science.164.3880.721. [DOI] [PubMed] [Google Scholar]
- Kalousek F., Morris N. R. The purification and properties of deoxyribonucleic acid methylase from rat spleen. J Biol Chem. 1969 Mar 10;244(5):1157–1163. [PubMed] [Google Scholar]
- Klein A. Mechanismen der wirtskontrollierten Modifikation des Phagen T1. Z Vererbungsl. 1965;96(4):346–363. [PubMed] [Google Scholar]
- McBride O. W., Peterson E. A. Separation of nuclei representing different phases of the growth cycle from unsynchronized mammalian cell cultures. J Cell Biol. 1970 Oct;47(1):132–139. doi: 10.1083/jcb.47.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salomon R., Kaye A. M., Herzberg M. Mouse nuclear satellite DNA: 5-methylcytosine content, pyrimidine isoplith distribution and electron microscopic appearance. J Mol Biol. 1969 Aug 14;43(3):581–592. doi: 10.1016/0022-2836(69)90360-x. [DOI] [PubMed] [Google Scholar]
- Sheid B., Srinivasan P. R., Borek E. Deoxyribonucleic acid methylase of mammalian tissues. Biochemistry. 1968 Jan;7(1):280–285. doi: 10.1021/bi00841a034. [DOI] [PubMed] [Google Scholar]
- WYATT G. R. Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J. 1951 May;48(5):581–584. doi: 10.1042/bj0480581. [DOI] [PMC free article] [PubMed] [Google Scholar]