Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Mar 1;56(3):746–761. doi: 10.1083/jcb.56.3.746

A MORPHOMETRIC STUDY OF THE REMOVAL OF PHENOBARBITAL-INDUCED MEMBRANES FROM HEPATOCYTES AFTER CESSATION OF TREATMENT

Robert P Bolender 1, Ewald R Weibel 1
PMCID: PMC2108940  PMID: 4569312

Abstract

It is well known that phenobarbital (PB) treatment produces an increase in the amount of cytoplasmic membranes of hepatocytes, with a parallel enhancement in the activity of drug-metabolizing enzymes. However, little is known about how the induced membranes are removed after the drug treatment is stopped. To consider this problem, the recovery of rat hepatocytes from PB induction (five daily injections, 100 mg/kg) was followed morphometrically. Treatment with PB produced a cellular enlargement (26%) due to increases in the volume of the cytoplasmic matrix (20%) and the volume (100%) and surface area (90%) of the smooth-surfaced endoplasmic reticulum (SER). The volume of the nuclei and the surface area of the Golgi apparatus were also increased, but no changes were detected in the volumes of the mitochondria or peroxisomes. The SER membranes induced by the PB were removed within 5 days after the end of the treatment period. During this period of membrane removal, we observed an increase in the volume (800%) and number (96%) of autophagic vacuoles without a change in dense bodies. A morphometric analysis of the content of the autophagic vacuoles showed that the endoplasmic reticulum membranes were preferentially removed, and from this we conclude that the formation of autophagic vacuoles was not a random process. Our findings show that the removal of excess cytoplasmic membranes is associated with an increase in autophagic activity and thus demonstrates the presence of a specific cellular mechanism which may be responsible for the bulk removal of PB-induced membranes.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arstila A. U., Trump B. F. Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am J Pathol. 1968 Nov;53(5):687–733. [PMC free article] [PubMed] [Google Scholar]
  2. Baudhuin P., Berthet J. Electron microscopic examination of subcellular fractions. II. Quantitative analysis of the mitochondrial population isolated from rat liver. J Cell Biol. 1967 Dec;35(3):631–648. doi: 10.1083/jcb.35.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CONNEY A. H., GILMAN A. G. PUROMYCIN INHIBITION OF ENZYME INDUCTION BY 3-METHYLCHOLANTHRENE AND PHENOBARBITAL. J Biol Chem. 1963 Nov;238:3682–3685. [PubMed] [Google Scholar]
  4. Conney A. H. Pharmacological implications of microsomal enzyme induction. Pharmacol Rev. 1967 Sep;19(3):317–366. [PubMed] [Google Scholar]
  5. DEDUVE C. FROM CYTASES TO LYSOSOMES. Fed Proc. 1964 Sep-Oct;23:1045–1049. [PubMed] [Google Scholar]
  6. Deter R. L. Quantitative characterization of dense body, autophagic vacuole, and acid phosphatase-bearing particle populations during the early phases of glucagon-induced autophagy in rat liver. J Cell Biol. 1971 Mar;48(3):473–489. doi: 10.1083/jcb.48.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FAWCETT D. W. The membranes of the cytoplasm. Lab Invest. 1961 Nov-Dec;10:1162–1188. [PubMed] [Google Scholar]
  8. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holtzman J. L., Gillette J. R. The effect of phenobarbital on the turnover of microsomal phospholipid in male and female rats. J Biol Chem. 1968 Jun 10;243(11):3020–3028. [PubMed] [Google Scholar]
  10. Jones A. L., Fawcett D. W. Hypertrophy of the agranular endoplasmic reticulum in hamster liver induced by phenobarbital (with a review on the functions of this organelle in liver). J Histochem Cytochem. 1966 Mar;14(3):215–232. doi: 10.1177/14.3.215. [DOI] [PubMed] [Google Scholar]
  11. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loud A. V. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol. 1968 Apr;37(1):27–46. doi: 10.1083/jcb.37.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
  15. Orrenius S., Ericsson J. L. Enzyme-membrane relationship in phenobarbital induction of synthesis of drug-metabolizing enzyme system and proliferation of endoplasmic membranes. J Cell Biol. 1966 Feb;28(2):181–198. doi: 10.1083/jcb.28.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. REMMER H., MERKER H. J. EFFECT OF DRUGS ON THE FORMATION OF SMOOTH ENDOPLASMIC RETICULUM AND DRUG-METABOLIZING ENZYMES. Ann N Y Acad Sci. 1965 Mar 12;123:79–97. doi: 10.1111/j.1749-6632.1965.tb12247.x. [DOI] [PubMed] [Google Scholar]
  17. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]
  19. Wibo M., Amar-Costesec A., Berthet J., Beaufay H. Electron microscope examination of subcellular fractions. 3. Quantitative analysis of the microsomal fraction isolated from rat liver. J Cell Biol. 1971 Oct;51(1):52–71. doi: 10.1083/jcb.51.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES