Abstract
Pancreatic secretion in the rat was stimulated in vivo by pilocarpine injection causing 90% of the storage granules to be discharged within 2 h. Incubation in vitro with [14C]sorbitol indicated that maximal ingestion of this extracellular space marker occurred 3 h after secretogogue injection. Morphological cell membrane measurements on cells with stimulated secretion revealed a simultaneous decrease in amount of membrane bordering the microvilli at the cell apex, lamellar processes, and infoldings present at the latero-basal face of these cells. In 3-h stimulated cells, having the average zymogen granule content characteristic for that phase of secretion, ferritin treatment in vitro showed that the infoldings and related fragmentation vesicles had ingested ferritin and could consequently be considered as being transport vehicles for redundant cell membrane. During stimulated secretion numerous vesicles and vacuoles appeared in the apical cytoplasm. Part of these structures were postulated to be related to the Golgi complex and were discussed in relation to secretory protein transport. Another part of these structures was assumed to have an endocytotic nature, although they never contained ferritin.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ainsworth S. K., Karnovsky M. J. An ultrastructural staining method for enhancing the size and electron opacity of ferritin in thin sections. J Histochem Cytochem. 1972 Mar;20(3):225–229. doi: 10.1177/20.3.225. [DOI] [PubMed] [Google Scholar]
- Amsterdam A., Ohad I., Schramm M. Dynamic changes in the ultrastructure of the acinar cell of the rat parotid gland during the secretory cycle. J Cell Biol. 1969 Jun;41(3):753–773. doi: 10.1083/jcb.41.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amsterdam A., Schramm M., Ohad I., Salomon Y., Selinger Z. Concomitant synthesis of membrane protein and exportable protein of the secretory granule in rat parotid gland. J Cell Biol. 1971 Jul;50(1):187–200. doi: 10.1083/jcb.50.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynszpan-Winograd O. Morphological aspects of exocytosin in the adrenal medulla. Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):291–292. doi: 10.1098/rstb.1971.0058. [DOI] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol. 1971 Jul;50(1):135–158. doi: 10.1083/jcb.50.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korneliussen H. Ultrastructure of normal and stimulated motor endplates with comments on the origin and fate of synaptic vesicles. Z Zellforsch Mikrosk Anat. 1972;130(1):28–57. doi: 10.1007/BF00306993. [DOI] [PubMed] [Google Scholar]
- Kramer M. F., Poort C. Protein synthesis in the pancreas of the rat after stimulation of secretion. Z Zellforsch Mikrosk Anat. 1968;86(4):475–486. doi: 10.1007/BF00324859. [DOI] [PubMed] [Google Scholar]
- RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]