Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Apr 1;57(1):117–123. doi: 10.1083/jcb.57.1.117

CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE

An Early Defect in Inherited Retinal Degeneration of C3H Mice

Susan Y Schmidt 1, Richard N Lolley 1
PMCID: PMC2108963  PMID: 4347974

Abstract

Cyclic nucleotides have been implicated in the differentiation and function of the vertebrate retina. In the normal retina of DBA mice, the specific activity of cyclic-nucleotide phosphodiesterase (PDE), with cyclic-AMP as the substrate (cAMP-PDE), increases eightfold between the 6th and 20th postnatal day. Kinetic analysis of retinae from newborn mice reveals a PDE with a single Michaelis constant (Km) value for cyclic-AMP (low Km-PDE). After the 6th postnatal day, a second PDE with a high Km for cyclic-AMP (high Km-PDE) can be demonstrated. The appearance and increasing activity of the high Km-PDE coincides with the differentiation and growth of photoreceptor outer segments. Additionally, the high Km-PDE is shown by microchemical techniques to be concentrated in the photoreceptor cell layer and the low Km-PDE within the inner layers of the normal retina. In C3H mice afflicted with an inherited degeneration of the photoreceptor layer, the postnatal increase in the specific activity of cAMP-PDE is substantially lower than in the normal retina. The postnatal increase in the specific activity of cAMP-PDE in two regions of the brain of C3H mice is the same as in the normal strain. A deficiency in high Km-PDE activity in the C3H retina is evident on the 7th postnatal day, when the activity of low Km-PDE, photoreceptor morphology, and rhodopsin content of these retina are essentially normal. In the adult C3H retina, the PDE activity with cyclic-GMP and cyclic-UMP as substrates is significantly below that of the normal retina. These data indicate that an alteration in cyclic-AMP metabolism occurs before photoreceptor cell degeneration in the retinae of C3H mice.

Full Text

The Full Text of this article is available as a PDF (462.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bitensky M. W., Gorman R. E., Miller W. H. Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc Natl Acad Sci U S A. 1971 Mar;68(3):561–562. doi: 10.1073/pnas.68.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breckenridge B. M., Johnston R. E. Cyclic 3',5'-nucleotide phosphodiesterase in brain. J Histochem Cytochem. 1969 Aug;17(8):505–511. doi: 10.1177/17.8.505. [DOI] [PubMed] [Google Scholar]
  3. Caley D. W., Johnson C., Liebelt R. A. The postnatal development of the retina in the normal and rodless CBA mouse: a light and electron microscopic study. Am J Anat. 1972 Feb;133(2):179–212. doi: 10.1002/aja.1001330205. [DOI] [PubMed] [Google Scholar]
  4. Chader G. J. Hormonal effects on the neural retina: induction of glutamine synthetase by cyclic-3',5'-AMP. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1102–1105. doi: 10.1016/0006-291x(71)90575-4. [DOI] [PubMed] [Google Scholar]
  5. KARLI P., STOECKEL M. E., PORTE A. D'EG'EN'ERESCENCE DES CELLULES VISUELLES PHOTOR'ECEPTRICES ET PERSISTANCE D'UNE SENSIBILIT'E DE LA R'ETINE A LA STIMULATION PHOTIQUE. OBSERVATIONS AU MICROSCOPE 'ELECTRONIQUE. Z Zellforsch Mikrosk Anat. 1965;65:238–252. [PubMed] [Google Scholar]
  6. LEWIN E., HESS H. H. INTRALAMINAR DISTRIBUTION OF NA+-K+ ADENOSINE TRIPHOSPHATASE IN RAT CORTEX. J Neurochem. 1964 Jun;11:473–481. doi: 10.1111/j.1471-4159.1964.tb11606.x. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lavail M. M., Reif-Lehrer L. Glutamine synthetase in the normal and dystorphic mouse retina. J Cell Biol. 1971 Oct;51(1):348–354. doi: 10.1083/jcb.51.1.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lolley R. N. Changes in glucose and energy metabolism in Vivo in developing retinae from visually-competent (DBA-1J) and mutant (C3H-HeJ) mice. J Neurochem. 1972 Jan;19(1):175–185. doi: 10.1111/j.1471-4159.1972.tb01267.x. [DOI] [PubMed] [Google Scholar]
  10. Lolley R. N. Hexokinase activity in bipolar and ganglion layers of retinae which survive photoreceptor degeneration in vivo. J Neurochem. 1972 Sep;19(9):2245–2247. doi: 10.1111/j.1471-4159.1972.tb05137.x. [DOI] [PubMed] [Google Scholar]
  11. Lolley R. N. RNA and DNA in developing retinae: comparison of a normal with the degenerating retinae of C3H mice. J Neurochem. 1973 Jan;20(1):175–182. doi: 10.1111/j.1471-4159.1973.tb12114.x. [DOI] [PubMed] [Google Scholar]
  12. Lolley R. N., Racz E. Changes in levels of ATPase activity in developing retinae of normal (DBA) and mutant (C3H) mice. Vision Res. 1972 Apr;12(4):567–571. doi: 10.1016/0042-6989(72)90152-6. [DOI] [PubMed] [Google Scholar]
  13. Miller W. H., Gorman R. E., Bitensky M. W. Cyclic adenosine monophosphate: function in photoreceptors. Science. 1971 Oct 15;174(4006):295–297. doi: 10.1126/science.174.4006.295. [DOI] [PubMed] [Google Scholar]
  14. NOELL W. K. Differentiation, metabolic organization, and viability of the visual cell. AMA Arch Ophthalmol. 1958 Oct;60(4 Pt 2):702–733. doi: 10.1001/archopht.1958.00940080722016. [DOI] [PubMed] [Google Scholar]
  15. Olney J. W. An electron microscopic study of synapse formation, receptor outer segment development, and other aspects of developing mouse retina. Invest Ophthalmol. 1968 Jun;7(3):250–268. [PubMed] [Google Scholar]
  16. Pannbacker R. G., Fleischman D. E., Reed D. W. Cyclic nucleotide phosphodiesterase: high activity in a mammalian photoreceptor. Science. 1972 Feb 18;175(4023):757–758. doi: 10.1126/science.175.4023.757. [DOI] [PubMed] [Google Scholar]
  17. SIDMAN R. L., GREEN M. C. RETINAL DEGENERATION IN THE MOUSE: LOCATION OF THE RD LOCUS IN LINKAGE GROUP XVII. J Hered. 1965 Jan-Feb;56:23–29. doi: 10.1093/oxfordjournals.jhered.a107364. [DOI] [PubMed] [Google Scholar]
  18. Sanyal S. Changes of lysosomal enzymes during hereditary degeneration and histogenesis of retina in mice. I. Acid phosphatase visualized by azo-dye and lead nitrate methods. Histochemie. 1970;23(3):207–219. doi: 10.1007/BF00306424. [DOI] [PubMed] [Google Scholar]
  19. Schmidt M. J., Palmer E. C., Dettbarn W. D., Robison G. A. Cyclic AMP and adenyl cyclase in the developing rat brain. Dev Psychobiol. 1970;3(1):53–67. doi: 10.1002/dev.420030108. [DOI] [PubMed] [Google Scholar]
  20. Sonohara O., Shiose Y. [Electron microscopic study of the visual cell of inherited retinal dystrophic mice]. Nihon Ganka Kiyo. 1968 Jan;19(1):77–86. [PubMed] [Google Scholar]
  21. Thompson W. J., Appleman M. M. Characterization of cyclic nucleotide phosphodiesterases of rat tissues. J Biol Chem. 1971 May 25;246(10):3145–3150. [PubMed] [Google Scholar]
  22. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  23. Weiss B. Ontogenetic development of adenyl cyclase and phosphodiesterase in rat brain. J Neurochem. 1971 Mar;18(3):469–477. doi: 10.1111/j.1471-4159.1971.tb11974.x. [DOI] [PubMed] [Google Scholar]
  24. Woolsey T. A. Somatosensory, auditory and visual cortical areas of the mouse. Johns Hopkins Med J. 1967 Aug;121(2):91–112. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES