Abstract
Cyclic nucleotides have been implicated in the differentiation and function of the vertebrate retina. In the normal retina of DBA mice, the specific activity of cyclic-nucleotide phosphodiesterase (PDE), with cyclic-AMP as the substrate (cAMP-PDE), increases eightfold between the 6th and 20th postnatal day. Kinetic analysis of retinae from newborn mice reveals a PDE with a single Michaelis constant (Km) value for cyclic-AMP (low Km-PDE). After the 6th postnatal day, a second PDE with a high Km for cyclic-AMP (high Km-PDE) can be demonstrated. The appearance and increasing activity of the high Km-PDE coincides with the differentiation and growth of photoreceptor outer segments. Additionally, the high Km-PDE is shown by microchemical techniques to be concentrated in the photoreceptor cell layer and the low Km-PDE within the inner layers of the normal retina. In C3H mice afflicted with an inherited degeneration of the photoreceptor layer, the postnatal increase in the specific activity of cAMP-PDE is substantially lower than in the normal retina. The postnatal increase in the specific activity of cAMP-PDE in two regions of the brain of C3H mice is the same as in the normal strain. A deficiency in high Km-PDE activity in the C3H retina is evident on the 7th postnatal day, when the activity of low Km-PDE, photoreceptor morphology, and rhodopsin content of these retina are essentially normal. In the adult C3H retina, the PDE activity with cyclic-GMP and cyclic-UMP as substrates is significantly below that of the normal retina. These data indicate that an alteration in cyclic-AMP metabolism occurs before photoreceptor cell degeneration in the retinae of C3H mice.
Full Text
The Full Text of this article is available as a PDF (462.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bitensky M. W., Gorman R. E., Miller W. H. Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc Natl Acad Sci U S A. 1971 Mar;68(3):561–562. doi: 10.1073/pnas.68.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breckenridge B. M., Johnston R. E. Cyclic 3',5'-nucleotide phosphodiesterase in brain. J Histochem Cytochem. 1969 Aug;17(8):505–511. doi: 10.1177/17.8.505. [DOI] [PubMed] [Google Scholar]
- Caley D. W., Johnson C., Liebelt R. A. The postnatal development of the retina in the normal and rodless CBA mouse: a light and electron microscopic study. Am J Anat. 1972 Feb;133(2):179–212. doi: 10.1002/aja.1001330205. [DOI] [PubMed] [Google Scholar]
- Chader G. J. Hormonal effects on the neural retina: induction of glutamine synthetase by cyclic-3',5'-AMP. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1102–1105. doi: 10.1016/0006-291x(71)90575-4. [DOI] [PubMed] [Google Scholar]
- KARLI P., STOECKEL M. E., PORTE A. D'EG'EN'ERESCENCE DES CELLULES VISUELLES PHOTOR'ECEPTRICES ET PERSISTANCE D'UNE SENSIBILIT'E DE LA R'ETINE A LA STIMULATION PHOTIQUE. OBSERVATIONS AU MICROSCOPE 'ELECTRONIQUE. Z Zellforsch Mikrosk Anat. 1965;65:238–252. [PubMed] [Google Scholar]
- LEWIN E., HESS H. H. INTRALAMINAR DISTRIBUTION OF NA+-K+ ADENOSINE TRIPHOSPHATASE IN RAT CORTEX. J Neurochem. 1964 Jun;11:473–481. doi: 10.1111/j.1471-4159.1964.tb11606.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lavail M. M., Reif-Lehrer L. Glutamine synthetase in the normal and dystorphic mouse retina. J Cell Biol. 1971 Oct;51(1):348–354. doi: 10.1083/jcb.51.1.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lolley R. N. Changes in glucose and energy metabolism in Vivo in developing retinae from visually-competent (DBA-1J) and mutant (C3H-HeJ) mice. J Neurochem. 1972 Jan;19(1):175–185. doi: 10.1111/j.1471-4159.1972.tb01267.x. [DOI] [PubMed] [Google Scholar]
- Lolley R. N. Hexokinase activity in bipolar and ganglion layers of retinae which survive photoreceptor degeneration in vivo. J Neurochem. 1972 Sep;19(9):2245–2247. doi: 10.1111/j.1471-4159.1972.tb05137.x. [DOI] [PubMed] [Google Scholar]
- Lolley R. N. RNA and DNA in developing retinae: comparison of a normal with the degenerating retinae of C3H mice. J Neurochem. 1973 Jan;20(1):175–182. doi: 10.1111/j.1471-4159.1973.tb12114.x. [DOI] [PubMed] [Google Scholar]
- Lolley R. N., Racz E. Changes in levels of ATPase activity in developing retinae of normal (DBA) and mutant (C3H) mice. Vision Res. 1972 Apr;12(4):567–571. doi: 10.1016/0042-6989(72)90152-6. [DOI] [PubMed] [Google Scholar]
- Miller W. H., Gorman R. E., Bitensky M. W. Cyclic adenosine monophosphate: function in photoreceptors. Science. 1971 Oct 15;174(4006):295–297. doi: 10.1126/science.174.4006.295. [DOI] [PubMed] [Google Scholar]
- NOELL W. K. Differentiation, metabolic organization, and viability of the visual cell. AMA Arch Ophthalmol. 1958 Oct;60(4 Pt 2):702–733. doi: 10.1001/archopht.1958.00940080722016. [DOI] [PubMed] [Google Scholar]
- Olney J. W. An electron microscopic study of synapse formation, receptor outer segment development, and other aspects of developing mouse retina. Invest Ophthalmol. 1968 Jun;7(3):250–268. [PubMed] [Google Scholar]
- Pannbacker R. G., Fleischman D. E., Reed D. W. Cyclic nucleotide phosphodiesterase: high activity in a mammalian photoreceptor. Science. 1972 Feb 18;175(4023):757–758. doi: 10.1126/science.175.4023.757. [DOI] [PubMed] [Google Scholar]
- SIDMAN R. L., GREEN M. C. RETINAL DEGENERATION IN THE MOUSE: LOCATION OF THE RD LOCUS IN LINKAGE GROUP XVII. J Hered. 1965 Jan-Feb;56:23–29. doi: 10.1093/oxfordjournals.jhered.a107364. [DOI] [PubMed] [Google Scholar]
- Sanyal S. Changes of lysosomal enzymes during hereditary degeneration and histogenesis of retina in mice. I. Acid phosphatase visualized by azo-dye and lead nitrate methods. Histochemie. 1970;23(3):207–219. doi: 10.1007/BF00306424. [DOI] [PubMed] [Google Scholar]
- Schmidt M. J., Palmer E. C., Dettbarn W. D., Robison G. A. Cyclic AMP and adenyl cyclase in the developing rat brain. Dev Psychobiol. 1970;3(1):53–67. doi: 10.1002/dev.420030108. [DOI] [PubMed] [Google Scholar]
- Sonohara O., Shiose Y. [Electron microscopic study of the visual cell of inherited retinal dystrophic mice]. Nihon Ganka Kiyo. 1968 Jan;19(1):77–86. [PubMed] [Google Scholar]
- Thompson W. J., Appleman M. M. Characterization of cyclic nucleotide phosphodiesterases of rat tissues. J Biol Chem. 1971 May 25;246(10):3145–3150. [PubMed] [Google Scholar]
- Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
- Weiss B. Ontogenetic development of adenyl cyclase and phosphodiesterase in rat brain. J Neurochem. 1971 Mar;18(3):469–477. doi: 10.1111/j.1471-4159.1971.tb11974.x. [DOI] [PubMed] [Google Scholar]
- Woolsey T. A. Somatosensory, auditory and visual cortical areas of the mouse. Johns Hopkins Med J. 1967 Aug;121(2):91–112. [PubMed] [Google Scholar]
