Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Apr 1;57(1):54–65. doi: 10.1083/jcb.57.1.54

LOW RESISTANCE JUNCTIONS IN CRAYFISH

I. Two Arrays of Globules in Junctional Membranes

Camillo Peracchia 1
PMCID: PMC2108965  PMID: 4120610

Abstract

The ultrastructure of low resistance junctions between segments of lateral giant fibers in crayfish is studied in sections from specimens fixed either by conventional methods or by glutaraldehyde-H2O2 or by glutaraldehyde-lanthanum. Cross sections through junctions fixed by conventional glutaraldehyde display the usual trilaminar profile of two parallel membranes separated by a narrow gap. Most of the junctional regions appear covered by 500–800 Å vesicles which lie on both sides of the junction in rows adjacent to the membranes. Gross sections through junctions fixed by glutaraldehyde-H2O2 display, in regions containing vesicles, membranes with a beaded profile. The beads correspond to globules ∼125 Å in width and ∼170 Å in height arranged in a hexagonal pattern with a unit cell of ∼200 Å. The globules of one membrane match precisely with those of the adjacent membrane, and opposite globules seem to come in contact with each other at the center of the junction. The membrane of the vesicles also contains globules. Occasionally the globules of the vesicles seem to join with those of the junctional membranes, apparently forming intracellular junctions. Injunctions negatively stained by lanthanum the globules are seen organized into two arrangements. Areas containing globules in a hexagonal array with a unit cell of ∼200 Å (swollen pattern) are seen adjacent to areas in which the globules are more closely and disorderly packed (close packing), the minimum center-to-center distance between adjacent globules being ∼125 Å. At higher magnification each globule appears composed of six subunits arranged in a circle around a central region occupied by lanthanum (possibly a pit).

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada Y., Bennett M. V. Experimental alteration of coupling resistance at an electrotonic synapse. J Cell Biol. 1971 Apr;49(1):159–172. doi: 10.1083/jcb.49.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BENNETT M. V., ALJURE E., NAKAJIMA Y., PAPPAS G. D. Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science. 1963 Jul 19;141(3577):262–264. doi: 10.1126/science.141.3577.262. [DOI] [PubMed] [Google Scholar]
  3. Benedetti E. L., Emmelot P. Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. J Cell Biol. 1968 Jul;38(1):15–24. doi: 10.1083/jcb.38.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bullivant S., Loewenstein W. R. Structure of coupled and uncoupled cell junctions. J Cell Biol. 1968 Jun;37(3):621–632. doi: 10.1083/jcb.37.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chalcroft J. P., Bullivant S. An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J Cell Biol. 1970 Oct;47(1):49–60. doi: 10.1083/jcb.47.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dewey M. M., Barr L. Intercellular Connection between Smooth Muscle Cells: the Nexus. Science. 1962 Aug 31;137(3531):670–672. doi: 10.1126/science.137.3531.670-a. [DOI] [PubMed] [Google Scholar]
  8. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HAMA K. Some observations on the fine structure of the giant fibers of the crayfishes (Cambarus virilus and Cambarus clarkii) with special reference to the submicroscopic organization of the synapses. Anat Rec. 1961 Dec;141:275–293. doi: 10.1002/ar.1091410403. [DOI] [PubMed] [Google Scholar]
  11. KARRER H. E. The striated musculature of blood vessels. II. Cell interconnections and cell surface. J Biophys Biochem Cytol. 1960 Sep;8:135–150. doi: 10.1083/jcb.8.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McNutt N. S., Weinstein R. S. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol. 1970 Dec;47(3):666–688. doi: 10.1083/jcb.47.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pappas G. D., Asada Y., Bennett M. V. Morphological correlates of increased coupling resistance at an electrotonic synapse. J Cell Biol. 1971 Apr;49(1):173–188. doi: 10.1083/jcb.49.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Payton B. W., Bennett M. V., Pappas G. D. Permeability and structure of junctional membranes at an electrotonic synapse. Science. 1969 Dec 26;166(3913):1641–1643. doi: 10.1126/science.166.3913.1641. [DOI] [PubMed] [Google Scholar]
  15. Payton B. W., Bennett M. V., Pappas G. D. Temperature-dependence of resistance at an electrotonic synapse. Science. 1969 Aug 8;165(3893):594–597. doi: 10.1126/science.165.3893.594. [DOI] [PubMed] [Google Scholar]
  16. Peracchia C. Low resistance junctions in crayfish. I. Two arrays of globules in junctional membranes. J Cell Biol. 1973 Apr;57(1):66–76. doi: 10.1083/jcb.57.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peracchia C., Mittler B. S. Fixation by means of glutaraldehyde-hydrogen peroxide reaction products. J Cell Biol. 1972 Apr;53(1):234–238. doi: 10.1083/jcb.53.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peracchia C., Robertson J. D. Increase in osmiophilia of axonal membranes of crayfish as a result of electrical stimulation, asphyxia, or treatment with reducing agents. J Cell Biol. 1971 Oct;51(1):223–239. doi: 10.1083/jcb.51.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Politoff A. L., Socolar S. J., Loewenstein W. R. Permeability of a cell membrane junction. Dependence on energy metabolism. J Gen Physiol. 1969 Apr;53(4):498–515. doi: 10.1085/jgp.53.4.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ROBERTSON J. D. THE OCCURRENCE OF A SUBUNIT PATTERN IN THE UNIT MEMBRANES OF CLUB ENDINGS IN MAUTHNER CELL SYNAPSES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:201–221. doi: 10.1083/jcb.19.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Revel J. P., Karnovsky M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3):C7–C12. doi: 10.1083/jcb.33.3.c7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SJOSTRAND F. S., ANDERSSON-CEDERGREN E., DEWEY M. M. The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res. 1958 Apr;1(3):271–287. doi: 10.1016/s0022-5320(58)80008-8. [DOI] [PubMed] [Google Scholar]
  23. Sato T. A modified method for lead staining of thin sections. J Electron Microsc (Tokyo) 1968;17(2):158–159. [PubMed] [Google Scholar]
  24. Socolar S. J., Politoff A. L. Uncoupling cell junctions in a glandular epithelium by depolarizing current. Science. 1971 Apr 30;172(3982):492–494. doi: 10.1126/science.172.3982.492. [DOI] [PubMed] [Google Scholar]
  25. Staehelin L. A. Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze-etching. Proc Natl Acad Sci U S A. 1972 May;69(5):1318–1321. doi: 10.1073/pnas.69.5.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES