Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 May 1;57(2):475–483. doi: 10.1083/jcb.57.2.475

SUBCELLULAR MORPHOMETRIC AND BIOCHEMICAL ANALYSES OF DEVELOPING RAT HEPATOCYTES

Annemarie Herzfeld 1, Micheline Federman 1, Olga Greengard 1
PMCID: PMC2108981  PMID: 4348789

Abstract

Livers of rats between the 16th gestational and 100th postnatal day of age were subjected to quantitative biochemical and electron microscope, morphometric analyses. The amount of total mitochondrial protein per gram of liver remained at 34% of the adult level throughout the last 4 days of gestation but this was the period of rapid rise in the levels of cytochrome c oxidase, aspartate aminotransferase, and glutamate dehydrogenase in mitochondria; the nuclear fraction also acquired some glutamate dehydrogenase but lost most of it during postnatal development. During early postnatal life the amount of mitochondrial protein rose in parallel with the levels of cytochrome c oxidase and glutamate dehydrogenase but the upsurges of glutaminase and, later, of ornithine aminotransferase were accompanied by relatively little change in total mitochondrial protein. The surface area of rough endoplasmic reticulum per unit volume of hepatocyte cytoplasm (Sv RER) did not change significantly throughout the period of development studied. From the 16th day of gestation to term the surface area of smooth ER (Sv SER), the volume occupied by mitochondria (Vv MT) and their number (Nv MT) remained at 30, 66, and 45% of their adult values, respectively. Vv MT and Nv MT attained their maximal levels by the 2nd postnatal day and Sv SER between days 2 and 12. Mitochondria of adult liver are thus smaller and contain more protein per unit volume than do those of fetal liver. After the 12th postnatal day, hepatocytes treble their size; they acquire more cytoplasm with additional enzymes but without further change in organelle concentration. The data reveal several distinct phases in the differentiation of hepatocytes. Each phase can be characterized by the extent to which the quantity and composition of various subcellular compartments evolve.

Full Text

The Full Text of this article is available as a PDF (721.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  2. DAWKINS M. J. Respiratory enzymes in the liver of the newborn rat. Proc R Soc Lond B Biol Sci. 1959 Mar 17;150(939):284–298. doi: 10.1098/rspb.1959.0022. [DOI] [PubMed] [Google Scholar]
  3. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):97–117. doi: 10.1083/jcb.30.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greengard O., Dewey H. K. The prematurely evoked synthesis of liver tryptophan oxygenase. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1698–1701. doi: 10.1073/pnas.68.8.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greengard O. Enzymic differentiation in mammalian tissues. Essays Biochem. 1971;7:159–205. [PubMed] [Google Scholar]
  7. Greengard O., Federman M., Knox W. E. Cytomorphometry of developing rat liver and its application to enzymic differentiation. J Cell Biol. 1972 Feb;52(2):261–272. doi: 10.1083/jcb.52.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herzfeld A., Greengard O. Aspartate aminotransferase in fat tissues: changes with growth and hormones. Biochim Biophys Acta. 1971 Apr 20;237(1):88–98. doi: 10.1016/0304-4165(71)90033-x. [DOI] [PubMed] [Google Scholar]
  9. Herzfeld A., Greengard O. Endocrine modification of the developmental formation of ornithine aminotransferase in rat tissues. J Biol Chem. 1969 Sep 25;244(18):4894–4898. [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Linder-Horowitz M. Changes in glutaminase activities of rat liver and kidney during pre- and post-natal development. Biochem J. 1969 Aug;114(1):65–70. doi: 10.1042/bj1140065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Loud A. V. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol. 1968 Apr;37(1):27–46. doi: 10.1083/jcb.37.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Snell K., Walker D. G. The adaptive behaviour of isoenzyme forms of rat liver alanine aminotransferases during development. Biochem J. 1972 Jun;128(2):403–413. doi: 10.1042/bj1280403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WERGEDAL J. E., HARPER A. E. METABOLIC ADAPTATIONS IN HIGHER ANIMALS. 10. GLUTAMIC DEHYDROGENASE ACTIVITY OF RATS CONSUMING HIGH PROTEIN DIETS. Proc Soc Exp Biol Med. 1964 Jul;116:600–604. doi: 10.3181/00379727-116-29316. [DOI] [PubMed] [Google Scholar]
  15. Weibel E. R., Kistler G. S., Scherle W. F. Practical stereological methods for morphometric cytology. J Cell Biol. 1966 Jul;30(1):23–38. doi: 10.1083/jcb.30.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. di Prisco G., Banay-Schwartz M., Strecker H. J. Glutamate dehydrogenase in nuclear and mitochondrial fractions of rat liver. Biochem Biophys Res Commun. 1968 Nov 25;33(4):606–612. doi: 10.1016/0006-291x(68)90339-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES