Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 May 1;57(2):424–452. doi: 10.1083/jcb.57.2.424

PERMEABILITY OF MUSCLE CAPILLARIES TO EXOGENOUS MYOGLOBIN

Nicolae Simionescu 1, Maia Simionescu 1, George E Palade 1
PMCID: PMC2108986  PMID: 4696549

Abstract

Whale skeletal muscle myoglobin (mol wt 17,800; molecular dimensions 25 x 34 x 42 Å) was used as a probe molecule for the pore systems of muscle capillaries. Diaphragms of Wistar-Furth rats were fixed in situ at intervals up to 4 h after the intravenous injection of the tracer, and myoglobin was localized in the tissue by a peroxidase reaction. Gel filtration of plasma samples proved that myoglobin molecules remained in circulation in native monomeric form. At 30–35 s postinjection, the tracer marked ∼75% of the plasmalemmal vesicles on the blood front of the endothelium, 15% of those located inside and none of those on the tissue front. At 45 s, the labeling of vesicles in the inner group reached 60% but remained nil for those on the tissue front. Marked vesicles appeared on the latter past 45 s and their frequency increased to ∼80% by 60–75 s, concomitantly with the appearance of myoglobin in the pericapillary spaces. Significant regional heterogeneity in initial labeling was found in the different segments of the endothelium (i.e., perinuclear cytoplasm, organelle region, cell periphery, and parajunctional zone). Up to 60 s, the intercellular junctions and spaces of the endothelium were free of myoglobin reaction product; thereafter, the latter was detected in the distal part of the intercellular spaces in concentration generally equal to or lower than that prevailing in the adjacent pericapillary space. The findings indicate that myoglobin molecules cross the endothelium of muscle capillaries primarily via plasmalemmal vesicles. Since a molecule of this size is supposed to exit through both pore systems, our results confirm the earlier conclusion that the plasmalemmal vesicles represent the large pore system; in addition, they suggest that the same structures are, at least in part, the structural equivalent of the small pore system of this type of capillaries.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONINI E. INTERRELATIONSHIP BETWEEN STRUCTURE AND FUNCTION IN HEMOGLOBIN AND MYOGLOBIN. Physiol Rev. 1965 Jan;45:123–170. doi: 10.1152/physrev.1965.45.1.123. [DOI] [PubMed] [Google Scholar]
  2. Anderson W. A. The use of exogenous myoglobin as an ultrastructural tracer. Reabsorption and translocation of protein by the renal tubule. J Histochem Cytochem. 1972 Sep;20(9):672–684. doi: 10.1177/20.9.672. [DOI] [PubMed] [Google Scholar]
  3. Awad E. S., Deranleau D. A. Thermal denaturation of myoglobin. I. Kinetic resolution of reaction mechanism. Biochemistry. 1968 May;7(5):1791–1795. doi: 10.1021/bi00845a025. [DOI] [PubMed] [Google Scholar]
  4. BANERJEE R. [Thermodynamic study of the heme-globin association. I. Dissociation equilibrium of metmyoglobin: thermodynamic data]. Biochim Biophys Acta. 1962 Oct 22;64:368–384. doi: 10.1016/0006-3002(62)90746-1. [DOI] [PubMed] [Google Scholar]
  5. BRESLOW E., BEYCHOK S., HARDMAN K. D., GURD F. R. RELATIVE CONFORMATIONS OF SPERM WHALE METMYOGLOBIN AND APOMYOGLOBIN IN SOLUTION. J Biol Chem. 1965 Jan;240:304–309. [PubMed] [Google Scholar]
  6. Badran A. F., Leonard E. P., Provenza D. V. Histochemical demonstration of beta-glucosaminidase activity during sequential molar development in the swiss albino mouse. Histochemie. 1970;23(1):1–6. doi: 10.1007/BF00309483. [DOI] [PubMed] [Google Scholar]
  7. Bruns R. R., Palade G. E. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol. 1968 May;37(2):244–276. doi: 10.1083/jcb.37.2.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bruns R. R., Palade G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968 May;37(2):277–299. doi: 10.1083/jcb.37.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bálint A., Nagy Z. Permeability tracers and serum proteins. Experientia. 1971 Feb 15;27(2):175–175. doi: 10.1007/BF02145880. [DOI] [PubMed] [Google Scholar]
  10. Cardon S. Z., Oestermeyer C. F., Bloch E. H. Effect of oxygen on cyclic red blood cell flow in unanesthetized mammalian striated muscle as determined by microscopy. Microvasc Res. 1970 Jan;2(1):67–76. doi: 10.1016/0026-2862(70)90052-x. [DOI] [PubMed] [Google Scholar]
  11. Casley-Smith J. R., Chin J. C. The passage of cytoplasmic vesicles across endothelial and mesothelial cells. J Microsc. 1971 Jun;93(3):167–189. doi: 10.1111/j.1365-2818.1971.tb02280.x. [DOI] [PubMed] [Google Scholar]
  12. Clark J. F., Gurd F. R. Effect of alkylation of sperm whale myoglobin on response to extremes of temperature and pH. J Biol Chem. 1967 Jul 25;242(14):3257–3264. [PubMed] [Google Scholar]
  13. Cotran R. S., Karnovsky M. J., Goth A. Resistance of Wistar-Furth rats to the mast cell-damaging effect of horseradish peroxidase. J Histochem Cytochem. 1968 May;16(5):382–383. doi: 10.1177/16.5.382. [DOI] [PubMed] [Google Scholar]
  14. Cotran R. S., Karnovsky M. J. Ultrastructural studies on the permeability of the mesothelium to horseradish peroxidase. J Cell Biol. 1968 Apr;37(1):123–137. doi: 10.1083/jcb.37.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DREWS G. A., ENGEL W. K. An attempt at histochemical localization of myoglobin in skeletal muscle by the benzidine-peroxidase reaction. J Histochem Cytochem. 1961 Mar;9:206–207. doi: 10.1177/9.2.206. [DOI] [PubMed] [Google Scholar]
  16. DiBona D. R. Passive intercellular pathway in amphibian epithelia. Nat New Biol. 1972 Aug 9;238(84):179–181. doi: 10.1038/newbio238179a0. [DOI] [PubMed] [Google Scholar]
  17. Dickerson R. E., Takano T., Eisenberg D., Kallai O. B., Samson L., Cooper A., Margoliash E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J Biol Chem. 1971 Mar 10;246(5):1511–1535. [PubMed] [Google Scholar]
  18. FRONTICELLI C., BUCCI E. ACETONE EXTRACTION OF HEME FROM MYOGLOBIN AND HEMOGLOBIN AT ACID PH. Biochim Biophys Acta. 1963 Nov 15;78:530–531. doi: 10.1016/0006-3002(63)90915-6. [DOI] [PubMed] [Google Scholar]
  19. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fernandez L. A., Rettori O., Mejía R. H. Correlation between body fluid volumes and body weight in the rat. Am J Physiol. 1966 Apr;210(4):877–879. doi: 10.1152/ajplegacy.1966.210.4.877. [DOI] [PubMed] [Google Scholar]
  21. GRANT R. T. DIRECT OBSERVATION OF SKELETAL MUSCLE BLOOD VESSELS (RAT CREMASTER). J Physiol. 1964 Jul;172:123–137. doi: 10.1113/jphysiol.1964.sp007407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. GROTTE G. Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand Suppl. 1956;211:1–84. [PubMed] [Google Scholar]
  23. Goldfischer S. The cytochemical localization of myoglobin in striated muscle of man and walrus. J Cell Biol. 1967 Jul;34(1):398–403. doi: 10.1083/jcb.34.1.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  25. Grant R. T., Wright H. P. Further observations on the blood vessels of skeletal muscle (rat cremaster). J Anat. 1968 Nov;103(Pt 3):553–565. [PMC free article] [PubMed] [Google Scholar]
  26. HARRISON S. C., BLOUT E. R. REVERSIBLE CONFORMATIONAL CHANGES OF MYOGLOBIN AND APOMYOGLOBIN. J Biol Chem. 1965 Jan;240:299–303. [PubMed] [Google Scholar]
  27. Hanania G. I., Yeghiayan A., Cameron B. F. Absorption spectra of sperm-whale ferrimyoglobin. Biochem J. 1966 Jan;98(1):189–192. doi: 10.1042/bj0980189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hardman K. D., Eylar E. H., Ray D. K., Banaszak L. J., Gurd F. R. Isolation of sperm whale myoglobin by low temperature fractionation with ethanol and metallic ions. J Biol Chem. 1966 Jan 25;241(2):432–442. [PubMed] [Google Scholar]
  29. Hartzell C. R., Clark J. F., Gurd F. R. Hemic acid dissociation in whale, seal, and porpoise myoglobins and their alkylated derivatives. J Biol Chem. 1968 Feb 25;243(4):697–701. [PubMed] [Google Scholar]
  30. Haschemeyer R. H. Electron microscopy of enzymes. Adv Enzymol Relat Areas Mol Biol. 1970;33:71–118. doi: 10.1002/9780470122785.ch2. [DOI] [PubMed] [Google Scholar]
  31. Hopwood D. Some aspects of fixation with glutaraldehyde. A biochemical and histochemical comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and glycogen, with a note on penetration of glutaraldehyde into liver. J Anat. 1967 Jan;101(Pt 1):83–92. [PMC free article] [PubMed] [Google Scholar]
  32. Hugli T. E., Gurd F. R. Carboxymethylation of sperm whale myoglobin in the dissolved state. J Biol Chem. 1970 Apr 25;245(8):1939–1946. [PubMed] [Google Scholar]
  33. JAVID J., FISCHER D. S., SPAET T. H. Inability of haptoglobin to bind myoglobin. Blood. 1959 Jun;14(6):683–687. [PubMed] [Google Scholar]
  34. James N. T. Histochemical demonstration of myoglobin in skeletal muscle fibres and muscle spindles. Nature. 1968 Sep 14;219(5159):1174–1175. doi: 10.1038/2191174a0. [DOI] [PubMed] [Google Scholar]
  35. KEILIN D. Reactions of haemoproteins with hydrogen peroxide and the supposed formation of hydrogen peroxide during the autoxidation of haemoglobin. Nature. 1961 Aug 19;191:769–770. doi: 10.1038/191769a0. [DOI] [PubMed] [Google Scholar]
  36. KENDREW J. C. The three-dimensional structure of a protein molecule. Sci Am. 1961 Dec;205:96–110. doi: 10.1038/scientificamerican1261-96. [DOI] [PubMed] [Google Scholar]
  37. KENDREW J. C., WATSON H. C., STRANDBERG B. E., DICKERSON R. E., PHILLIPS D. C., SHORE V. C. The amino-acid sequence x-ray methods, and its correlation with chemical data. Nature. 1961 May 20;190:666–670. doi: 10.1038/190666a0. [DOI] [PubMed] [Google Scholar]
  38. KUROZUMI T., INADA Y., SHIBATA K. Peroxidase activity of hemoproteins. III. Activation of methemoglobin and catalase by formamide and guanidine. Arch Biochem Biophys. 1961 Sep;94:464–476. doi: 10.1016/0003-9861(61)90074-1. [DOI] [PubMed] [Google Scholar]
  39. Karnovsky M. J., Rice D. F. Exogenous cytochrome c as an ultrastructural tracer. J Histochem Cytochem. 1969 Nov;17(11):751–753. doi: 10.1177/17.11.751. [DOI] [PubMed] [Google Scholar]
  40. Karnovsky M. J., Shea S. M. Transcapillary transport by pinocytosis. Microvasc Res. 1970 Oct;2(4):353–360. doi: 10.1016/0026-2862(70)90030-0. [DOI] [PubMed] [Google Scholar]
  41. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. LATHEM W. The binding of myoglobin by plasma protein. J Exp Med. 1960 Jan 1;111:65–75. doi: 10.1084/jem.111.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. LEVIN O. Electron micrographs of bovine cytochrome c. J Mol Biol. 1963 Feb;6:137–140. doi: 10.1016/s0022-2836(63)80129-1. [DOI] [PubMed] [Google Scholar]
  44. LEVIN O. Electron microscopic investigations of the sub-unit of haemoglobin and the myoglobin molecule. J Mol Biol. 1963 Feb;6:158–163. doi: 10.1016/s0022-2836(63)80132-1. [DOI] [PubMed] [Google Scholar]
  45. MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Majno G., Gilmore V., Leventhal M. A technique for the microscopic study of blood vessels in living striated muscle (cremaster). Circ Res. 1967 Dec;21(6):823–832. doi: 10.1161/01.res.21.6.823. [DOI] [PubMed] [Google Scholar]
  47. Mellema J. E., van Bruggen E. F. An assessment of negative staining in the electron microscopy of low molecular weight proteins. J Mol Biol. 1968 Jan 14;31(1):75–82. doi: 10.1016/0022-2836(68)90055-7. [DOI] [PubMed] [Google Scholar]
  48. Moll W. The diffusion coefficient of myoglobin in muscle homogenate. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;299(3):247–251. doi: 10.1007/BF00362587. [DOI] [PubMed] [Google Scholar]
  49. Morecki R., Zimmerman H. M., Becker N. H. Transport of peroxidase by the developing rat choroid plexus. Acta Neuropathol. 1969 Sep 9;14(1):14–18. doi: 10.1007/BF00687699. [DOI] [PubMed] [Google Scholar]
  50. Morita S., Cassens R. G., Briskey E. J. Localization of myoglobin in striated muscle of the domestic pig; benzidine and NADH2-TR reactions. Stain Technol. 1969 Nov;44(6):283–286. doi: 10.3109/10520296909063367. [DOI] [PubMed] [Google Scholar]
  51. PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
  52. Palade G. E., Bruns R. R. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968 Jun;37(3):633–649. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. RENKIN E. M. TRANSPORT OF LARGE MOLECULES ACROSS CAPILLARY WALLS. Physiologist. 1964 Feb;60:13–28. [PubMed] [Google Scholar]
  54. Ray D. K., Gurd F. R. Some interrelations between carboxymethylation and heme reactions in sperm whale myoglobin. J Biol Chem. 1967 May 10;242(9):2062–2068. [PubMed] [Google Scholar]
  55. Seligman A. M., Karnovsky M. J., Wasserkrug H. L., Hanker J. S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol. 1968 Jul;38(1):1–14. doi: 10.1083/jcb.38.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shea S. M., Karnovsky M. J., Bossert W. H. Vesicular transport across endothelium: simulation of a diffusion model. J Theor Biol. 1969 Jul;24(1):30–42. doi: 10.1016/s0022-5193(69)80004-4. [DOI] [PubMed] [Google Scholar]
  57. Shea S. M., Karnovsky M. J. Brownian motion: a theoretical explanation for the movement of vesicles across the endothelium. Nature. 1966 Oct 22;212(5060):353–355. doi: 10.1038/212353a0. [DOI] [PubMed] [Google Scholar]
  58. Shirahama T., Cohen A. S. The role of mucopolysaccharides in vesicle architecture and endothelial transport. An electron microscope study of myocardial blood vessels. J Cell Biol. 1972 Jan;52(1):198–206. doi: 10.1083/jcb.52.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Simionescu N., Palade G. E. Dextrans and glycogens as particulate tracers for studying capillary permeability. J Cell Biol. 1971 Sep;50(3):616–624. doi: 10.1083/jcb.50.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Simionescu N., Simionescu M., Palade G. E. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J Cell Biol. 1972 May;53(2):365–392. doi: 10.1083/jcb.53.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Smaje L., Zweifach B. W., Intaglietta M. Micropressures and capillary filtration coefficients in single vessels of the cremaster muscle of the rat. Microvasc Res. 1970 Jan;2(1):96–110. doi: 10.1016/0026-2862(70)90055-5. [DOI] [PubMed] [Google Scholar]
  62. URNES P. J., IMAHORI K., DOTY P. The optical rotatory dispersion of right-handed alpha-helices in sperm whale myoglobin. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1635–1641. doi: 10.1073/pnas.47.10.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Vassar P. S., Hards J. M., Brooks D. E., Hagenberger B., Seaman G. V. Physicochemical effects of aldehydes on the human erythrocyte. J Cell Biol. 1972 Jun;53(3):809–818. doi: 10.1083/jcb.53.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Vegge T., Winther F. O., Olsen B. R. Horseradish peroxidase in plasma studied by gel filtration. Histochemie. 1971;28(1):16–22. doi: 10.1007/BF00305628. [DOI] [PubMed] [Google Scholar]
  65. WHEBY M. S., BARRETT O., Jr, CROSBY W. H. Serum protein binding of myoglobin, hemoglobin and hematin. Blood. 1960 Nov;16:1579–1585. [PubMed] [Google Scholar]
  66. Wade J. B., Discala V. A. The effect of osmotic flow on the distribution of horseradish peroxidase within the intercellular spaces of toad bladder epithelium. J Cell Biol. 1971 Nov;51(21):553–558. doi: 10.1083/jcb.51.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Wittenberg J. B. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev. 1970 Oct;50(4):559–636. doi: 10.1152/physrev.1970.50.4.559. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES