Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 May 1;57(2):453–474. doi: 10.1083/jcb.57.2.453

BIOCHEMICAL CYTOLOGY OF TRICHOMONAD FLAGELLATES

I. Subcellular Localization of Hydrolases, Dehydrogenases, and Catalase in Tritrichomonas foetus

Miklós Müller 1
PMCID: PMC2108990  PMID: 4144506

Abstract

To determine the localization of several enzymes in Tritrichomonas foetus, the axenic KV-1 strain was grown in Diamond's medium with bovine serum, homogenized in 0.25 M sucrose, and subjected to analytical differential and isopycnic centrifugation. The fractions were assayed for their enzymatic composition and examined electron microscopically. NADH and NADPH dehydrogenases, about 90% of the catalase, and two hydrolases, α-galactosidase and manganese-activated β-galactosidase I are in the nonsedimentable part of the cytoplasm. α-Glycerophosphate and malate dehydrogenases are associated with a large particle, whose equilibrium density in sucrose gradients is 1.24. This particle corresponds to that population of the paracostal and paraxostylar granules which, having a uniform granular matrix surrounded by a single membrane, resemble microbodies from other organisms. The small sedimentable portion of catalase (about 10% of the total activity) is not associated with these granules and equilibrates at density 1.22. The nature of the subcellular entity carrying catalase could not be ascertained. Hydrolases with a pH optimum around 6–6.5 (protease, β-N-acetylglucosaminidase, β-N-acetylgalactosaminidase, and cation-independent β-galactosidase II), as well as a large part of acid phosphatase, are associated with a population of large particles which equilibrate at densities from 1.15 to 1.20. The hydrolases in these granules lose their structure-bound latency easily after freezing and thawing. These particles correspond to another population of the paracostal and paraxostylar granules which have varied shape and inhomogeneous content with frequent myelin figures, indicating a digestive function. The rest of the phosphatase and most of the acid β-glucuronidase activity are in a smaller granule fraction with an equilibrium density around 1.18. The latency of these enzymes is quite resistant to freezing and thawing. This particle population consists of smaller, very often flattened vesicles and granules, many of which are clearly fragments of the prominent Golgi apparatus of the cell.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E., Dumont J. N. A comparative study of the concrement vacuole of certain endocommensal ciliates--a so-called mechanoreceptor. J Ultrastruct Res. 1966 Jun;15(3):414–450. doi: 10.1016/s0022-5320(66)80117-x. [DOI] [PubMed] [Google Scholar]
  2. Aronson N. N., Jr, De Duve C. Digestive activity of lysosomes. II. The digestion of macromolecular carbohydrates by extracts of rat liver lysosomes. J Biol Chem. 1968 Sep 10;243(17):4564–4573. [PubMed] [Google Scholar]
  3. Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baudhuin P., Evrard P., Berthet J. Electron microscopic examination of subcellular fractions. I. The preparation of representative samples from suspensions of particles. J Cell Biol. 1967 Jan;32(1):181–191. doi: 10.1083/jcb.32.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brugerolle G. Mise en évidence du processus d'endocytose et des structures lysosomiques chez Trichomonas vaginalis. C R Acad Sci Hebd Seances Acad Sci D. 1971 May 17;272(20):2558–2560. [PubMed] [Google Scholar]
  6. Cerkasovová A. Energy-producing metabolism of Tritrichomonas foetus. I. Evidence for control of intensity and the contribution of aerobiosis to total energy production. Exp Parasitol. 1970 Apr;27(2):165–178. doi: 10.1016/0014-4894(70)90022-6. [DOI] [PubMed] [Google Scholar]
  7. DE DUVE C., WATTIAUX R. Tissue fractionation studies. VII. Release of bound hydrolases by means of triton X-100. Biochem J. 1956 Aug;63(4):606–608. doi: 10.1042/bj0630606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DIAMOND L. S. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol. 1957 Aug;43(4):488–490. [PubMed] [Google Scholar]
  9. Daniel W. A., Mattern C. F., Honigberg B. M. Fine structure of the mastigont system in Tritrichomonas muris (Grassi). J Protozool. 1971 Nov;18(4):575–586. doi: 10.1111/j.1550-7408.1971.tb03378.x. [DOI] [PubMed] [Google Scholar]
  10. Filadoro F. Fine structure of chromatic granules in Trichomonas vaginalis Donné. Experientia. 1970;26(2):213–214. doi: 10.1007/BF01895592. [DOI] [PubMed] [Google Scholar]
  11. Harrap G. J., Watkins W. M. Enzymes of Trichomonas foetus. Separation and properties of two beta-galactosidases. Biochem J. 1970 May;117(4):667–675. doi: 10.1042/bj1170667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Honigberg B. M., Mattern C. F., Daniel W. A. Fine structure of the mastigont system in Tritrichomonas foetus (Riedmüller). J Protozool. 1971 May;18(2):183–198. doi: 10.1111/j.1550-7408.1971.tb03306.x. [DOI] [PubMed] [Google Scholar]
  13. KIRBY H. Observations on the trichomonad flagellate of the reproductive organs of cattle. J Parasitol. 1951 Oct;37(5 1):445–459. [PubMed] [Google Scholar]
  14. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maeda N., Oka Y., Furuya M., Ito Y., Osaki H. [Analysis of immunogenicity in protozoan cells. 24. Distribution of acid phosphatase activity in Trichomonas foetus]. Igaku To Seibutsugaku. 1969 Aug 10;79(2):53–58. [PubMed] [Google Scholar]
  16. Müller M. Lysosomes in Tetrahymena pyriformis. II. Intracellular distribution of several acid hydrolases. Acta Biol Acad Sci Hung. 1971;22(2):179–186. [PubMed] [Google Scholar]
  17. OSADA M. Electron microscopic studies on protozoa. II. Studies on Trichomonas muris. Keio J Med. 1962 Dec;11:227–252. doi: 10.2302/kjm.11.227. [DOI] [PubMed] [Google Scholar]
  18. Peters T. J., Müller M., De Duve C. Lysosomes of the arterial wall. I. Isolation and subcellular fractionation of cells from normal rabbit aorta. J Exp Med. 1972 Nov 1;136(5):1117–1139. doi: 10.1084/jem.136.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SHARMA N. N., BOURNE G. H. STUDIES ON THE HISTOCHEMICAL DISTRIBUTION OF HYDROLASES IN TRICHOMONAS VAGINALIS. Acta Histochem. 1964 Jun 30;18:213–221. [PubMed] [Google Scholar]
  20. SIMPSON C. F., WHITE F. H. STRUCTURE OF TRICHOMONAS FOETUS AS REVEALED BY ELECTRON MICROSCOPY. Am J Vet Res. 1964 May;25:815–824. [PubMed] [Google Scholar]
  21. Smith B. F., Stewart B. T. Fine structure of Trichomonas vaginalis. Exp Parasitol. 1966 Aug;19(1):52–63. doi: 10.1016/0014-4894(66)90052-x. [DOI] [PubMed] [Google Scholar]
  22. WATKINS W. M. Enzymes of Trichomonas foetus; the action of cell-free extracts on blood-group substances and low-molecular-weight glycosides. Biochem J. 1959 Feb;71(2):261–274. doi: 10.1042/bj0710261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamazaki R. K., Tolbert N. E. Malate dehydrogenase in leaf peroxisomes. Biochim Biophys Acta. 1969 Mar 18;178(1):11–20. doi: 10.1016/0005-2744(69)90127-2. [DOI] [PubMed] [Google Scholar]
  24. de Duve C. The peroxisome: a new cytoplasmic organelle. Proc R Soc Lond B Biol Sci. 1969 Apr 15;173(1030):71–83. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES