Abstract
The structural basis for the function of microtubules and filaments in cell body contractility in the ciliate Stentor coeruleus was investigated. Cells in the extended state were obtained for ultrastructural analysis by treatment before fixation with a solution containing 10 mM EGTA, 50–80 mM Tris, 3 mM MgSO4, 7.5 mM NH4Cl, 10 mM phosphate buffer (pH 7.1). The response of Stentor to changes in the divalent cation concentrations in this solution suggests that Ca+2 and Mg+2 are physiologically important in the regulation of ciliate contractility. The generation of motive force for changes in cell length in Stentor resides in two distinct longitudinal cortical fiber systems, the km fibers and myonemes. Cyclic changes in cell length are associated with (a) the relative sliding of parallel, overlapping microtubule ribbons in the km fibers, and (b) a distinct alteration in the structure of the contractile filaments constituting the myonemes. The microtubule and filament systems are distinguished functionally as antagonistic contractile elements. The development of motive force for cell extension is accomplished by active microtubule-to-microtubule sliding generated by specific intertubule bridges. Evidence is presented which suggests that active shortening of contractile filaments, reflected in a reversible structural transformation of dense 4-nm filaments to tubular 10–12-nm filaments, provides the basis for rapid cell contraction.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Pollard T. D., Kuehl W. M. Isolation and characterization of myosin and two myosin fragments from human blood platelets. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2703–2707. doi: 10.1073/pnas.68.11.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amos W. B. Reversible mechanochemical cycle in the contraction of Vorticella. Nature. 1971 Jan 8;229(5280):127–128. doi: 10.1038/229127a0. [DOI] [PubMed] [Google Scholar]
- Amos W. B. Structure and coiling of the stalk in the peritrich ciliates Vorticella and Carchesium. J Cell Sci. 1972 Jan;10(1):95–122. doi: 10.1242/jcs.10.1.95. [DOI] [PubMed] [Google Scholar]
- Baker P. C., Schroeder T. E. Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube. Dev Biol. 1967 May;15(5):432–450. doi: 10.1016/0012-1606(67)90036-x. [DOI] [PubMed] [Google Scholar]
- Bannister L. H., Tatchell E. C. Contractility and the fibre systems of Stentor coeruleus. J Cell Sci. 1968 Jun;3(2):295–308. doi: 10.1242/jcs.3.2.295. [DOI] [PubMed] [Google Scholar]
- Behnke O., Forer A. Evidence for four classes of microtubules in individual cells. J Cell Sci. 1967 Jun;2(2):169–192. doi: 10.1242/jcs.2.2.169. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Mechanisms of sperm movement. Symp Soc Exp Biol. 1968;22:101–116. [PubMed] [Google Scholar]
- Cloney R. A. Cytoplasmic filaments and cell movements: epidermal cells during ascidian metamorphosis. J Ultrastruct Res. 1966 Feb;14(3):300–328. doi: 10.1016/s0022-5320(66)80051-5. [DOI] [PubMed] [Google Scholar]
- Ettienne E. M. Control of contractility in Spirostomum by dissociated calcium ions. J Gen Physiol. 1970 Aug;56(2):168–179. doi: 10.1085/jgp.56.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRIMSTONE A. V., CLEVELAND L. R. THE FINE STRUCTURE AND FUNCTION OF THE CONTRACTILE AXOSTYLES OF CERTAIN FLAGELLATES. J Cell Biol. 1965 Mar;24:387–400. doi: 10.1083/jcb.24.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R. Chemical dissection of cilia. Arch Biol (Liege) 1965;76(2):317–352. [PubMed] [Google Scholar]
- Gibbons I. R., Rowe A. J. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science. 1965 Jul 23;149(3682):424–426. doi: 10.1126/science.149.3682.424. [DOI] [PubMed] [Google Scholar]
- Gibbons I. R. Studies on the adenosine triphosphatase activity of 14 S and 30 S dynein from cilia of Tetrahymena. J Biol Chem. 1966 Dec 10;241(23):5590–5596. [PubMed] [Google Scholar]
- Gibbons I. R. The biochemistry of motility. Annu Rev Biochem. 1968;37:521–546. doi: 10.1146/annurev.bi.37.070168.002513. [DOI] [PubMed] [Google Scholar]
- HOFFMANN-BERLING H. Der Mechanismus eines neuen, von der Muskelkontraktion verschiedenen Kontraktionszyklus. Biochim Biophys Acta. 1958 Feb;27(2):247–255. doi: 10.1016/0006-3002(58)90331-7. [DOI] [PubMed] [Google Scholar]
- HUXLEY H. E. ELECTRON MICROSCOPE STUDIES ON THE STRUCTURE OF NATURAL AND SYNTHETIC PROTEIN FILAMENTS FROM STRIATED MUSCLE. J Mol Biol. 1963 Sep;7:281–308. doi: 10.1016/s0022-2836(63)80008-x. [DOI] [PubMed] [Google Scholar]
- Hatano S., Kondo H., Miki-Noumura T. Purification of sea urchin egg actin. Exp Cell Res. 1969 May;55(2):275–277. doi: 10.1016/0014-4827(69)90492-3. [DOI] [PubMed] [Google Scholar]
- Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- Jones A. R., Jahn T. L., Fonseca J. R. Contraction of protoplasm. 3. Cinematographic analysis of the contraction of some heterotrichs. J Cell Physiol. 1970 Feb;75(1):1–7. doi: 10.1002/jcp.1040750102. [DOI] [PubMed] [Google Scholar]
- Lehman W. J., Rebhun L. I. The structural elements responsible for contraction in the ciliate Spirostomum. Protoplasma. 1971;72(2):153–178. doi: 10.1007/BF01279048. [DOI] [PubMed] [Google Scholar]
- McIntosh J. R., Porter K. R. Microtubules in the spermatids of the domestic fowl. J Cell Biol. 1967 Oct;35(1):153–173. doi: 10.1083/jcb.35.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neviackas J. A., Margulis L. The effect of colchicine on regenerating membranellar cilia in Stentor coeruleus. J Protozool. 1969 Feb;16(1):165–171. doi: 10.1111/j.1550-7408.1969.tb02250.x. [DOI] [PubMed] [Google Scholar]
- Newman E. Contraction in stentor coeruleus: a cinematic analysis. Science. 1972 Aug 4;177(4047):447–449. doi: 10.1126/science.177.4047.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters A., Vaughn J. E. Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J Cell Biol. 1967 Jan;32(1):113–119. doi: 10.1083/jcb.32.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Ito S. Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement. J Cell Biol. 1970 Aug;46(2):267–289. doi: 10.1083/jcb.46.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Shelton E., Weihing R. R., Korn E. D. Ultrastructural characterization of F-actin isolated from Acanthamoeba castellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromyosin. J Mol Biol. 1970 May 28;50(1):91–97. doi: 10.1016/0022-2836(70)90106-3. [DOI] [PubMed] [Google Scholar]
- RANDALL J. T., JACKSON S. F. Fine structure and function in Stentor polymorphous. J Biophys Biochem Cytol. 1958 Nov 25;4(6):807–830. doi: 10.1083/jcb.4.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satir P. STUDIES ON CILIA : II. Examination of the Distal Region of the Ciliary Shaft and the Role of the Filaments in Motility. J Cell Biol. 1965 Sep 1;26(3):805–834. doi: 10.1083/jcb.26.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder T. E. The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z Zellforsch Mikrosk Anat. 1970;109(4):431–449. [PubMed] [Google Scholar]
- Schäfer-Danneel S. Strukturelle und funktionelle Voraussetzungen für die Bewegung von Amoeba proteus. Z Zellforsch Mikrosk Anat. 1967;78(4):441–462. [PubMed] [Google Scholar]
- Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szollosi D. Cortical cytoplasmic filaments of cleaving eggs: a structural element corresponding to the contractile ring. J Cell Biol. 1970 Jan;44(1):192–209. doi: 10.1083/jcb.44.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tartar V., Pitelka D. R. Reversible effects of antimitotic agents on cortical morphogenesis in the marine ciliate Condylostoma magnum. J Exp Zool. 1969 Oct;172(2):201–217. doi: 10.1002/jez.1401720206. [DOI] [PubMed] [Google Scholar]
- Tilney L. G., Mooseker M. Actin in the brush-border of epithelial cells of the chicken intestine. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2611–2615. doi: 10.1073/pnas.68.10.2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weihing R. R., Korn E. D. Ameba actin: the presence of 3-methylhistidine. Biochem Biophys Res Commun. 1969 Jun 27;35(6):906–912. doi: 10.1016/0006-291x(69)90710-4. [DOI] [PubMed] [Google Scholar]
- Weis-Fogh T., Amos W. B. Evidence for a new mechanism of cell motility. Nature. 1972 Apr 7;236(5345):301–304. doi: 10.1038/236301a0. [DOI] [PubMed] [Google Scholar]
- Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
- Williams N. E., Luft J. H. Use of a nitrogen mustard derivative in fixation for electron microscopy and observations on the ultrastructure of Tetrahymena. J Ultrastruct Res. 1968 Nov;25(3):271–292. doi: 10.1016/s0022-5320(68)80074-7. [DOI] [PubMed] [Google Scholar]
- Wood D. C. Electrophysiological studies of the protozoan, Stentor coeruleus. J Neurobiol. 1970;1(4):363–377. doi: 10.1002/neu.480010402. [DOI] [PubMed] [Google Scholar]