Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Mar;170(3):1254–1260. doi: 10.1128/jb.170.3.1254-1260.1988

Novel Ca2+-activated neutral protease from an aquatic fungus, Allomyces arbuscula.

M Ojha 1, C J Wallace 1
PMCID: PMC210900  PMID: 2830232

Abstract

A Ca2+-activated neutral protease was purified to homogeneity from an aquatic Phycomycete fungus, Allomyces arbuscula. It requires millimolar concentrations of Ca2+ for activation (1.8 to 2 mM for 50% activation). Sr2+ can replace Ca2+ but at higher concentrations (4 mM for 50% activation). The enzyme is a dimer of 40-kilodalton subunits and contains six cysteine residues, three of which are revealed only after the addition of micromolar concentrations of Ca2+; the other three are free. Enzyme activity is strongly inhibited by SH-group inhibitors and some trypsin inhibitors (leupeptin and alpha-N-tosyl-L-lysine chloromethyl ketone). The enzyme lacks general trypsinlike specificity, since substrates containing tryptic cleavage sites are not cleaved nor is enzyme activity inhibited by other trypsin inhibitors. The enzyme has many functional similarities to the extensively characterized mammalian and avian Ca2+-activated neutral proteases but differs in its substrate specificity, inhibition by alpha-N-tosyl-L-phenylalanine chloromethyl ketone, and subunit structure. It is, nevertheless, presumed that this enzyme has a similar high order of specificity and is involved in the regulation of a specific growth function.

Full text

PDF
1254

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achstetter T., Ehmann C., Wolf D. H. New proteolytic enzymes in yeast. Arch Biochem Biophys. 1981 Apr 1;207(2):445–454. doi: 10.1016/0003-9861(81)90052-7. [DOI] [PubMed] [Google Scholar]
  2. Anderson W. B., Gopalakrishna R. Functional and regulatory importance of calcium-mediated hydrophobic regions of calmodulin, protein kinase C, and other calcium-binding proteins. Curr Top Cell Regul. 1985;27:455–469. doi: 10.1016/b978-0-12-152827-0.50046-3. [DOI] [PubMed] [Google Scholar]
  3. Docherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  4. Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
  5. Gopalakrishna R., Head J. F. Rapid purification of calcium-activated protease by calcium-dependent hydrophobic-interaction chromatography. FEBS Lett. 1985 Jul 8;186(2):246–250. doi: 10.1016/0014-5793(85)80717-1. [DOI] [PubMed] [Google Scholar]
  6. Heussen C., Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980 Feb;102(1):196–202. doi: 10.1016/0003-2697(80)90338-3. [DOI] [PubMed] [Google Scholar]
  7. Lacks S. A., Springhorn S. S. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J Biol Chem. 1980 Aug 10;255(15):7467–7473. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Mas-Oliva J., Williams A. J., Nayler W. G. Two orientations of isolated cardiac sarcolemmal vesicles separated by affinity chromatography. Anal Biochem. 1980 Apr;103(2):222–226. doi: 10.1016/0003-2697(80)90259-6. [DOI] [PubMed] [Google Scholar]
  10. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  11. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  12. Riordan J. F. Arginyl residues and anion binding sites in proteins. Mol Cell Biochem. 1979 Jul 31;26(2):71–92. doi: 10.1007/BF00232886. [DOI] [PubMed] [Google Scholar]
  13. Sasaki T., Kikuchi T., Yumoto N., Yoshimura N., Murachi T. Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J Biol Chem. 1984 Oct 25;259(20):12489–12494. [PubMed] [Google Scholar]
  14. Turian G. Synthèse différentielle d'acide ribonucléique et différenciation sexuelle chez l'Allomyces. Dev Biol. 1963 Feb;6(1):61–72. doi: 10.1016/0012-1606(63)90005-8. [DOI] [PubMed] [Google Scholar]
  15. Yon R. J. Recent developments in protein chromatography involving hydrophobic interactions. Int J Biochem. 1978;9(6):373–379. doi: 10.1016/0020-711x(78)90048-4. [DOI] [PubMed] [Google Scholar]
  16. Zimmerman U. J., Schlaepfer W. W. Calcium-activated neutral protease (CANP) in brain and other tissues. Prog Neurobiol. 1984;23(1-2):63–78. doi: 10.1016/0301-0082(84)90012-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES