Abstract
In an effort to determine the subcellular localization of sodium- and potassium-activated adenosine triphosphatase (Na+, K+-ATPase) in the pseudobranch of the pinfish Lagodon rhomboides, this tissue was fractionated by differential centrifugation and the activities of several marker enzymes in the fractions were measured. Cytochrome c oxidase was found primarily in the mitochondrial-light mitochondrial (M+L) fraction. Phosphoglucomutase appeared almost exclusively in the soluble (S) fraction. Monoamine oxidase was concentrated in the nuclear (N) fraction, with a significant amount also in the microsomal (P) fraction but little in M+L or S. Na+, K+-ATPase and ouabain insensitive Mg2+-ATPase were distributed in N, M+L, and P, the former having its highest specific activity in P and the latter in M+L. Rate sedimentation analysis of the M+L fraction indicated that cytochrome c oxidase and Mg2+-ATPase were associated with a rapidly sedimenting particle population (presumably mitochondria), while Na+, K+-ATPase was found primarily in a slowly sedimenting component. At least 75% of the Na+, K+-ATPase in M+L appeared to be associated with structures containing no Mg2+-ATPase. Kinetic properties of the two ATPases were studied in the P fraction and were typical of these enzymes in other tissues. Na+, K+-ATPase activity was highly dependent on the ratio of Na+ and K+ concentrations but independent of absolute concentrations over at least a fourfold range.
Full Text
The Full Text of this article is available as a PDF (958.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- APPELMANS F., WATTIAUX R., DE DUVE C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955 Mar;59(3):438–445. doi: 10.1042/bj0590438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkinson A., Gatenby A. D., Lowe A. G. Subunit structure of the Na, K-dependent transport ATPase. Nat New Biol. 1971 Sep 29;233(39):145–146. doi: 10.1038/newbio233145a0. [DOI] [PubMed] [Google Scholar]
- BONTING S. L., CARAVAGGIO L. L., HAWKINS N. M. Studies on sodium-potassium-activated adenosinetriphosphatase. IV. Correlation with cation transport sensitive to cardiac glycosides. Arch Biochem Biophys. 1962 Sep;98:413–419. doi: 10.1016/0003-9861(62)90206-0. [DOI] [PubMed] [Google Scholar]
- Bakkeren J. A., Bonting S. L. Studies on (Na+-K+)-activated ATPase. XX. Properties of (Na+-K+)-activated ATPase in rat liver. Biochim Biophys Acta. 1968 Apr 29;150(3):460–466. doi: 10.1016/0005-2736(68)90145-4. [DOI] [PubMed] [Google Scholar]
- Barclay M., Barclay R. K., Essner E. S., Skipski V. P., Terebus-Kekish O. Plasma membranes of rat liver: isolation of lipoprotein macromolecules. Science. 1967 May 5;156(3775):665–667. doi: 10.1126/science.156.3775.665. [DOI] [PubMed] [Google Scholar]
- Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dendy L. A., Philpott C. W., Deter R. L. Localization of Na + , K + -ATPase and other enzymes in teleost pseudobranch. II. Morphological characterization of intact pseudobranch, subcellular fractions, and plasma membrane substructure. J Cell Biol. 1973 Jun;57(3):689–703. doi: 10.1083/jcb.57.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deter R. L., De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967 May;33(2):437–449. doi: 10.1083/jcb.33.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emmelot P., Bos C. J. Studies on plasma membranes. 3. Mg2+-ATPase,(Na+-K+-Mg2+)-ATPase and 5'-nucleotidase activity of plasma membranes isolated from rat liver. Biochim Biophys Acta. 1966 Jul 13;120(3):369–382. doi: 10.1016/0926-6585(66)90304-9. [DOI] [PubMed] [Google Scholar]
- Epstein F. H., Katz A. I., Pickford G. E. Sodium- and potassium-activated adenosine triphosphatase of gills: role in adaptation of teleosts to salt water. Science. 1967 Jun 2;156(3779):1245–1247. doi: 10.1126/science.156.3779.1245. [DOI] [PubMed] [Google Scholar]
- Ernst S. A., Goertemiller C. C., Jr, Ellis R. A. The effect of salt regimens on the development of (Na+K+)-dependent ATPase activity during the growth of salt glands of ducklings. Biochim Biophys Acta. 1967 Sep 9;135(4):682–692. doi: 10.1016/0005-2736(67)90098-3. [DOI] [PubMed] [Google Scholar]
- Ernst S. A. Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium-dependent phosphatase activity in the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):13–22. doi: 10.1177/20.1.13. [DOI] [PubMed] [Google Scholar]
- Ernst S. A. Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabin-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):23–38. doi: 10.1177/20.1.23. [DOI] [PubMed] [Google Scholar]
- Evans W. H. Fractionation of liver plasma membranes prepared by zonal centrifugation. Biochem J. 1970 Mar;116(5):833–842. doi: 10.1042/bj1160833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer A. G., Schulz A. R., Oliner L. Distribution of monoamine oxidase in the thyroid gland. Endocrinology. 1968 Jun;82(6):1098–1102. doi: 10.1210/endo-82-6-1098. [DOI] [PubMed] [Google Scholar]
- Fujita M., Matsui H., Nagano K., Nakao M. Asymmetric distribution of ouabain-sensitive ATPase activity in rat intestinal mucosa. Biochim Biophys Acta. 1971 Apr 13;233(2):404–408. doi: 10.1016/0005-2736(71)90337-3. [DOI] [PubMed] [Google Scholar]
- Green D. E., Tzagoloff A. Role of lipids in the structure and function of biological membranes. J Lipid Res. 1966 Sep;7(5):587–602. [PubMed] [Google Scholar]
- Greenawalt J. W., Schnaitman C. An appraisal of the use of monoamine oxidase as an enzyme marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1970 Jul;46(1):173–179. doi: 10.1083/jcb.46.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harb J. M., Copeland D. E. Fine structure of the pseudobranch of the flounder Paralichthys lethostigma. A description of a chloride-type cell and pseudobranch-type cell. Z Zellforsch Mikrosk Anat. 1969;101(2):167–174. doi: 10.1007/BF00335725. [DOI] [PubMed] [Google Scholar]
- Hosie R. J. The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem J. 1965 Aug;96(2):404–412. doi: 10.1042/bj0960404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz A. I., Epstein F. H. The physiological role of sodium-potassium activated adenosine triphosphatase in the active transport of cations across biological membranes. Isr J Med Sci. 1967 Jan-Feb;3(1):155–166. [PubMed] [Google Scholar]
- Kinne R., Schmitz J. E., Kinne-Saffran E. The localization of the Na + -K + -ATPase in the cells of rat kidney cortex. A study on isolated plasma membranes. Pflugers Arch. 1971;329(3):191–206. doi: 10.1007/BF00586614. [DOI] [PubMed] [Google Scholar]
- Kopaczyk K., Asai J., Allmann D. W., Oda T., Green D. E. Resolution of the repeating unit of the inner mitochondrial membrane. Arch Biochem Biophys. 1968 Mar 11;123(3):602–621. doi: 10.1016/0003-9861(68)90181-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laurent P., Dunel S., Barets A. Tentative de localisation histochimique d'une ATPase-Na plus-K plus au niveau de l'épithélium pseudobranchial des téléostéens. Histochemie. 1968;14(4):308–313. doi: 10.1007/BF00304253. [DOI] [PubMed] [Google Scholar]
- Matsui H., Schwartz A. Kinetic analysis of ouabain-K+ and Na+ interaction on a Na+, K+-dependent adenosinetriphosphatase from cardiac tissue. Biochem Biophys Res Commun. 1966 Oct 5;25(1):147–152. doi: 10.1016/0006-291x(66)90652-8. [DOI] [PubMed] [Google Scholar]
- Quigley J. P., Gotterer G. S. Distribution of (Na+-K+)-stimulated ATPase activity in rat intestinal mucosa. Biochim Biophys Acta. 1969 Apr;173(3):456–468. doi: 10.1016/0005-2736(69)90010-8. [DOI] [PubMed] [Google Scholar]
- Quigley J. P., Gotterer G. S. Properties of a high specific activity, (Na+-K+)-stimulated ATPase from rat intestinal mucosa. Biochim Biophys Acta. 1969 Apr;173(3):469–476. doi: 10.1016/0005-2736(69)90011-x. [DOI] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- Schoner W., von Ilberg C., Kramer R., Seubert W. On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Na+-and K+-activated ATPase from ox brain. Eur J Biochem. 1967 May;1(3):334–343. doi: 10.1007/978-3-662-25813-2_45. [DOI] [PubMed] [Google Scholar]
- Stjärne L., Roth R. J., Giarman N. J. Microsomal monoamine oxidase in sympathetically innervated tissues. Biochem Pharmacol. 1968 Sep;17(9):2008–2012. doi: 10.1016/0006-2952(68)90120-2. [DOI] [PubMed] [Google Scholar]
- Towle D. W., Copenhaver J. H., Jr Partial purification of a soluble (Na+ + K+)--dependent ATPase from rabbit kidney. Biochim Biophys Acta. 1970 Mar 17;203(1):124–132. doi: 10.1016/0005-2736(70)90042-8. [DOI] [PubMed] [Google Scholar]
- de Champlain J., Mueller R. A., Axelrod J. Subcellular localization of monoamine oxidase in rat tissues. J Pharmacol Exp Ther. 1969 Apr;166(2):339–345. [PubMed] [Google Scholar]
