Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Jul 1;58(1):79–95. doi: 10.1083/jcb.58.1.79

EFFECTS OF THALLIUM SALTS ON NEURONAL MITOCHONDRIA IN ORGANOTYPIC CORD-GANGLIA-MUSCLE COMBINATION CULTURES

Peter S Spencer 1, Edith R Peterson 1, Ricardo Madrid A 1, Cedric S Raine 1
PMCID: PMC2109031  PMID: 4125375

Abstract

A functionally coupled organotypic complex of cultured dorsal root ganglia, spinal cord peripheral nerve, and muscle has been employed in an experimental approach to the investigation of the neurotoxic effects of thallium. Selected cultures, grown for up to 12 wk in vitro, were exposed to thallous salts for periods ranging up to 4 days. Cytopathic effects were first detected after 2 h of exposure with the appearance of considerably enlarged mitochondria in axons of peripheral nerve fibers. With time, the matrix space of these mitochondria became progressively swollen, transforming the organelle into an axonal vacuole bounded by the original outer mitochondrial membrane. Coalescence of adjacent axonal vacuoles produced massive internal axon compartments, the membranes of which were shown by electron microprobe mass spectrometry to have an affinity for thallium. Other axoplasmic components were displaced within a distended but intact axolemma. The resultant fiber swelling caused myelin retraction from nodes of Ranvier but no degeneration. Impulses could still propagate along the nerve fibers throughout the time course of the experiment. Comparable, but less severe changes were seen in dorsal root ganglion neurons and in central nerve fibers. Other cell types showed no mitochondrial change. It is uncertain how these findings relate to the neurotoxic effects of thallium in vivo, but a sensitivity of the nerve cell and especially its axon to thallous salts is indicated.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BASS M. THALLIUM POISONING: A PRELIMINARY REPORT. J Am Osteopath Assoc. 1963 Nov;63:229–235. [PubMed] [Google Scholar]
  2. Bank W. J., Pleasure D. E., Suzuki K., Nigro M., Katz R. Thallium poisoning. Arch Neurol. 1972 May;26(5):456–464. doi: 10.1001/archneur.1972.00490110090009. [DOI] [PubMed] [Google Scholar]
  3. Britten J. S., Blank M. Thallium activation of the (Na+--K+)-activated ATPase of rabbit kidney. Biochim Biophys Acta. 1968 Apr 24;159(1):160–166. doi: 10.1016/0005-2744(68)90254-4. [DOI] [PubMed] [Google Scholar]
  4. Bunge M. B., Bunge R. P., Peterson E. R., Murray M. R. A light and electron microscope study of long-term organized cultures of rat dorsal root ganglia. J Cell Biol. 1967 Feb;32(2):439–466. doi: 10.1083/jcb.32.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bunge M. B., Bunge R. P., Peterson E. R. The onset of synapse formation in spinal cord cultures as studied by electron microscopy. Brain Res. 1967 Dec;6(4):728–749. doi: 10.1016/0006-8993(67)90129-1. [DOI] [PubMed] [Google Scholar]
  6. Crain S. M., Alfei L., Peterson E. R. Neuromuscular transmission in cultures of adult human and rodent skeletal muscle after innervation in vitro by fetal rodent spinal cord. J Neurobiol. 1970;1(4):471–489. doi: 10.1002/neu.480010409. [DOI] [PubMed] [Google Scholar]
  7. Crain S. M., Peterson E. R. Onset and development of functional interneuronal connections in explants of rat spinal cord-ganglia during maturation in culture. Brain Res. 1967 Dec;6(4):750–762. doi: 10.1016/0006-8993(67)90130-8. [DOI] [PubMed] [Google Scholar]
  8. Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
  9. GEHRING P. J., HAMMOND P. B. THE UPTAKE OF THALLIUM BY RABBIT ERYTHROCYTES. J Pharmacol Exp Ther. 1964 Aug;145:215–221. [PubMed] [Google Scholar]
  10. Gehring P. J., Hammond P. B. The interrelationship between thallium and potassium in animals. J Pharmacol Exp Ther. 1967 Jan;155(1):187–201. [PubMed] [Google Scholar]
  11. Herman M. M., Bensch K. G. Light and electron microscopic studies of acute and chronic thallium intoxication in rats. Toxicol Appl Pharmacol. 1967 Mar;10(2):199–222. doi: 10.1016/0041-008x(67)90104-4. [DOI] [PubMed] [Google Scholar]
  12. Inturrisi C. E. Thallium activation of K+-activated phosphatases from beef brain. Biochim Biophys Acta. 1969 Apr;173(3):567–569. doi: 10.1016/0005-2736(69)90022-4. [DOI] [PubMed] [Google Scholar]
  13. Inturrisi C. E. Thallium-induced dephosphorylation of a phosphorylated intermediate of the (sodium plus thallium-activated) ATPase. Biochim Biophys Acta. 1969 May 27;178(3):630–633. doi: 10.1016/0005-2744(69)90233-2. [DOI] [PubMed] [Google Scholar]
  14. Karkos J. Zmiany patomorfotyczne w układzie nerwowym i narzadach wewnetrznych w zatruciu zwiazkami talu. Pol Tyg Lek. 1970 Nov;25(47):1818–1819. [PubMed] [Google Scholar]
  15. Kayne F. J. Thallium (I) activation of pyruvate kinase. Arch Biochem Biophys. 1971 Mar;143(1):232–239. doi: 10.1016/0003-9861(71)90204-9. [DOI] [PubMed] [Google Scholar]
  16. Kinsey V. E., McLean I. W., Parker J. Studies on the crystalline lens. 18. Kinetics of thallium (T1 + ) transport in relation to that of the alkali metal cations. Invest Ophthalmol. 1971 Dec;10(12):932–942. [PubMed] [Google Scholar]
  17. MULLINS L. J., MOORE R. D. The movement of thallium ions in muscle. J Gen Physiol. 1960 Mar;43:759–773. doi: 10.1085/jgp.43.4.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maslova M. N., Natochin Iu V., Skul'skii I. A. Ugnetenie aktivnogo transporta natriia i aktivatsiia Na+, K+-zavisimoi ATFazy ionami talliia v kozhe liagushki. Biokhimiia. 1971 Jul-Aug;36(4):867–869. [PubMed] [Google Scholar]
  19. Masurovsky E. B., Peterson E. R. Photo-reconstituted collagen gel for tissue culture substrates. Exp Cell Res. 1973 Feb;76(2):447–448. doi: 10.1016/0014-4827(73)90399-6. [DOI] [PubMed] [Google Scholar]
  20. PETERSON E. R., CRAIN S. M., MURRAY M. R. DIFFERENTIATION AND PROLONGED MAINTENANCE OF BIOELECTRICALLY ACTIVE SPINAL CORD CULTURES (RAT, CHICK AND HUMAN). Z Zellforsch Mikrosk Anat. 1965 Mar 25;66(1):130–154. doi: 10.1007/BF00339322. [DOI] [PubMed] [Google Scholar]
  21. Palmieri F., Klingenberg M. Inhibition of respiration under the control of azide uptake by mitochondria. Eur J Biochem. 1967 Jun;1(4):439–446. doi: 10.1007/978-3-662-25813-2_60. [DOI] [PubMed] [Google Scholar]
  22. Parsons D. F., Williams G. R., Chance B. Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria. Ann N Y Acad Sci. 1966 Jul 14;137(2):643–666. doi: 10.1111/j.1749-6632.1966.tb50188.x. [DOI] [PubMed] [Google Scholar]
  23. Peracchia C., Robertson J. D. Increase in osmiophilia of axonal membranes of crayfish as a result of electrical stimulation, asphyxia, or treatment with reducing agents. J Cell Biol. 1971 Oct;51(1):223–239. doi: 10.1083/jcb.51.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peterson E. R., Crain S. M. Regeneration and innervation in cultures of adult mammalian skeletal muscle coupled with fetal rodent spinal cord. Exp Neurol. 1972 Jul;36(1):136–159. doi: 10.1016/0014-4886(72)90142-2. [DOI] [PubMed] [Google Scholar]
  25. RILEY M. V., LEHNINGER A. L. CHANGES IN SULFHYDRYL GROUPS OF RAT LIVER MITOCHONDRIA DURING SWELLING AND CONTRACTION. J Biol Chem. 1964 Jun;239:2083–2089. [PubMed] [Google Scholar]
  26. Raine C. S., Feldman L. A., Sheppard R. D., Bornstein M. B. Ultrastructure of measles virus in cultures of hamster cerebellum. J Virol. 1969 Aug;4(2):169–181. doi: 10.1128/jvi.4.2.169-181.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. THYRESSON N. Experimental investigation on thallium poisoning; influence of thallium on tissue metabolism. Acta Derm Venereol. 1950;30(5):417–441. [PubMed] [Google Scholar]
  28. Tackmann W., Lehmann H. J. Refraktärperiode und Serienimpulse im N. tibialis des Meerschweinchens bei akuter Thalliumpolyneuropathie. Z Neurol. 1971 Apr 28;199(1):105–115. [PubMed] [Google Scholar]
  29. Tandler B., Erlandson R. A., Wynder E. L. Riboflavin and mouse hepatic cell structure and function. I. Ultrastructural alterations in simple deficiency. Am J Pathol. 1968 Jan;52(1):69–96. [PMC free article] [PubMed] [Google Scholar]
  30. Tischner K. H., Murray M. R. The effects of sodium azide on cultures of peripheral nervous system. A. Light and electron microscope study. J Neuropathol Exp Neurol. 1972 Jul;31(3):393–410. doi: 10.1097/00005072-197207000-00001. [DOI] [PubMed] [Google Scholar]
  31. Wespi H. H., Mevissen D., Straub R. W. The effect of ouabain and ouabagenin on active transport of sodium and potassium in vagus nerve fibres. Arch Int Pharmacodyn Ther. 1969 Oct;181(2):307–315. [PubMed] [Google Scholar]
  32. Whetsell W. O., Jr, Bunge R. P. Reversible alterations in the Golgi complex of cultured neurons treated with an inhibitor of active Na and K transport. J Cell Biol. 1969 Aug;42(2):490–500. doi: 10.1083/jcb.42.2.490. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES